
1

Lecture 5: Computer
Architecture

• Simpletron
– Simpletron Architecture

– Simpletron Instruction Set

– Example Programs
The Simpletron is described in C How to Program by

Harvey Deitel.

• Computer Architecture
– Registers

– Flags

– Address Calculation

Simpletron Architecture
CPU

– The CPU contains one general-purpose register
called the accumulator

Memory
– All i nformation in the Simpletron is handled in

terms of words. A word is a signed four-digit
decimal number such as +3364 or –0001

– The Simpletron is equipped with a 100-word
memory, and these words are referenced by
their location numbers 00-99

– Before running a Simpletron Machine
Language (SML) program, it must be loaded
into memory. The first instruction of every
SML program is always placed in location 00.

– Each instruction occupies one word of memory.
The sign of an SML instruction is always
positive, but the sign of a data word may be
either positive or negative. Each location in the
Simpletron’s memory may contain either an
instruction, a data value used by the program, or
an unused area of memory.

I/O
– The Simpletron uses a keyboard for input and a

terminal screen for output

Simpletron

99
98
97

06
05
04
03
02
01
00

Memory

Accumulator
CPU

Terminal

Keyboard

Instruction Set
Instruction Op code Meaning
READ 10 Reads a word from the terminal into

a specific location in memory
WRITE 11 Writes a word from a specific

location in memory to the terminal
LOAD 20 Loads a word from a specific

location in memory into the
accumulator

STORE 21 Stores a word from the accumulator
into a specific location in memory

ADD 30 Adds a word from a specific location
in memory to the word in the
accumulator
(leaves result in the accumulator)

SUBTRACT 31 Subtracts a word from a specific
location in memory from the word in
the accumulator
(leaves result in the accumulator)

2

Instruction Set (cont.)

Instruction Op code Meaning
BRANCH 40 Branches to a specific location in

memory

BRANCHNEG 41 Branches to a specific location in
memory if the accumulator is
negative

BRANCHZERO 42 Branches to a specific location in
memory if the accumulator is zero

HALT 43 Halts

Simple Program

• Read two numbers, add them
together, and print the sum.

• Algorithm:
read A

read B

sum = A + B

print sum

stop

Assembly Instructions

read A (reads into the memory

location used to store A)

read B

load A (puts A into the accumulator)

add B (adds B to the accumulator,

leaving the result in the

accumulator)

store Sum (saves the number in the

accumulator into memory)

write Sum (writes out the result to the

terminal)

halt

Simpletron Assembly
Language

�
Simpletron

Machine Language
• 1-1 Translation SAL->SML

• Execution starts at location 0

• In our example:
– 7 instructions : locations 00 – 06

– 3 data values

• Where to put data?
– Directly after the program, or

– In high memory, working down (99 and
lower)

(homework hint: if you use the second option, then if
you need to add instructions you can leave the data
where it is and not have to re-do all your machine
language that refers to it!)

3

Translating into
Simpletron Machine

Code
• First, determine which memory

locations you want to use for your
data:
– 97 – A
– 98 – B
– 99 – Sum

• Then, look up the opcodes for each
instruction
– 1097 read A (10 = read, 97 = location

of A)
– 1098 read B (10 = read, 98 = B

location)
– 2097 load A (20 = load, 97 = A

location))
– 3098 add B (30 = add, 98 = B location)

Translating, cont.

– 2199 store Sum (21 = store, 99 =
sum location)

– 1199 write Sum (11 = write, 99 =
sum location)

– 4300 halt (43 = halt)

Program Execution

(Sum)
(B)
(A)

halt
write Sum
store result in Sum
add Acc to B
load A into Acc
read value into B
read value into A

99
98
97

06
05
04
03
02
01
00

4300
1199
2199
3098
2097
1098
1097

Accumulator

Memory

Branching Example

LOCATION CONTENTS MEANING

00 +1009 Read A
01 +1010 Read B
02 +2009 Load A
03 +3110 Subtract B
04 +4107 If B > A, go to 07
05 +1109 Write A
06 +4300 Halt
07 +1110 Write B
08 +4300 Halt
09 +0000 (Variable A)
10 +0000 (Variable B)

Read two numbers from the keyboard and
print the larger value:

4

Looping Example

LOCATION CONTENTS MEANING

00 +1107 Write the value of the variable Number
01 +2007 Load Number into the accumulator
02 +3008 Increment the accumulator by 1
03 +2107 Store incremented value back in Number
04 +3109 Subtract 11 from accumulator
05 +4100 Go to 00 if 10 iterations haven't been

completed
06 +4300 All done; Halt
07 +0001 (Number)
08 +0001 Constant 1 (used for incrementing)
09 +0011 Constant 11 (loop limit)

Use a loop to print the numbers one through 10:

Computer Organization

Control Unit

ALU

Registers

Memory

CPU

Input Output

Components

• Control Unit – fetches instructions,
decodes instructions, causes
instructions to be carried out.

• Arithmetic logical unit (ALU) –
performs arithmetic operations
(addition, etc.) on data.

• Registers – high speed memory cells
(don’ t need to go through the bus to
access). They vary in number and
purpose on different machines.

• Buses – communication pathways
connecting different
devices/components.

8086 Block Diagram

CS
DS
SS
ES

SI
DI

BP
SP

AX

BX

CX

DX

AH

BH

CH

DH

AL

BL

CL

DL

Data Registers

Index Registers

ALU

Bus
Interface

Unit

IP

Flags R

Control Unit

Instruction

Data

Data
Bus

Address
Bus

Control BusClock

Interrupt

+5V

5

Registers

• 8, 16, or 32 bit high-speed
storage locations inside the
CPU

• They can be accessed at a much
higher speed than conventional
memory.

• When optimizing for speed, use
registers.

• Four types: general purpose,
segment, index, status, and
control

General Purpose
Registers

• Data registers, also known as
general purpose registers: AX,
BX, CX, DX

• Used for arithmetic operations
and data movement

• Can be addressed as 16 bit or 8
bit values. For AX, upper 8 bits
are AH, lower 8 bits are AL.

• Remember: when when a 16 bit
register is modified, so is the
corresponding 8 bit registers!

Example

• move 0001 1001 1110 0100 to AX

AX AH AL

15 0

7 0 7 0

AX

AH AL

0000 0000 0000 0000

AX

AH AL

0001 1001 1110 0100

• move 0011 1101 to AH

AX

AH AL

Special Attributes of GP
Registers

• AX – accumulator – fastest for
arithmetic operations. Some math
instructions only use AX.

• BX – base – this register can hold an
address of a procedure or variable.
BX can also perform arithmetic and
data movement.

• CX – counter – this register acts as a
counter for repeating or looping
instructions

• DX – data – this register has a
special role in multiply and divide
operations. In multiplication it holds
the high 16 bits of the product. In
division it holds the remainder.

6

Segment Registers

• Segment registers are used as
base locations for program
instructions, data, and the stack.

• All references to memory
involve a segment register as
the base location.

Segment Registers, cont.

• CS – code segment – this register
holds the base location of all
instructions in a program

• DS – data segment – this is the
default base location for variables. It
is used by the CPU to calculate the
variable location.

• SS – stack segment – this register
contains the base location of the
stack.

• ES – extra segment – this is an
additional base location for memory
variables.

Index Registers

• Index registers contain the
offsets of data and instructions.

• Offset refers to the distance of a
variable, label, or instruction
from its base segment.

• Index registers are used when
processing strings, arrays, and
other data structures.

Index Registers, cont.
• BP – base pointer – this register

contains an offset from the SS
register and is often used by
subroutines to find the variables
passed to it on the stack.

• SP – stack pointer – this register
contains the offset from the top of
the stack. The complete top of stack
address is calculated using the SP
and SS registers.

• SI – source index – used to point to
data in memory. Named because
this is the index register commonly
used as the source in string
operations (for example)

• DI - destination index – index
register commonly used as the
destination in string operations

7

Status and Control
Registers

• IP – instruction pointer – always
contains the offset of the next
instruction. The IP and CS
registers combine to form the
complete address. IP is also
known as PC – the program
counter.

• Flags – a special register with
individual bit positions that give
the status of the CPU (control
flags) or results of arithmetic
operations (status flags).

Status Flags

• These indicate the status of
arithmetic and logical operations.

• Carry flag (CF) – set if the result of
an unsigned operation is too big to
fit into the destination. 1 = carry, 0 =
no carry.

• Overflow flag (OF) – set if the result
of a signed operation is too wide to
fit into the destination. 1 = overflow,
0 = no overflow.

• Sign flag (SF) – set when the result
of an operation is negative. 1 =
negative, 0 = positive

Status Flags, cont.

• Zero flag (ZF) – set when the result
of an arithmetic operation is zero.
Used by branch and loop instructions
when comparing values. 1 = zero, 0
= not zero.

• Auxili ary Carry – set when an
operation causes a carry from bit 3 to
bit 4 or a borrow from bit 4 to bit 3.
1= carry, 0 = no carry.

• Parity – indicates if the result of an
operation has an even or odd number
of bits. Used to verify memory
integrity or correct transmission of
data.

Addressing

• Address: a number referring to an 8-
bit memory location

• Logical addresses go from 0 to the
highest location

• How these are translated into
physical addresses varies.

• For Intel:
– 32-bit segment-offset address:

combination of base location (segment)
and offset to represent a logical location

– 20-bit absolute address, which refers to
a physical memory location

8

Addressing, cont.

• Problem: how to address 1,048576
bytes of memory with a 16-bit
wide address register (where the
max is 65,535)

• Solution: combine segment and
offset values to obtain the absolute
address

• Example: 08F1:0100
1) convert segment to absolute by

adding 4 zero bits: 08F10
2) add the offset: 0100 (hex)

0 8 F 1 0 -- segment value w/extra 4 0 bits
+ 0 1 0 0 -- add the offset
0 9 0 1 0 -- obtain the absolute address

(effective address)

Why Segment-Offset?

• You can load the program at any
segment address and individual
variable addresses to not need to be
recalculated.
– Why? Variable locations are 16-bit

offsets from the program’s data area.

– This is known as being segment
relocatable.

• Programs can access large data
structures by modifying the segment
portion of the data’s address to point
to new blocks of memory.

Data Segment

addressable memory on 8086

FFFFF

00000

Example:
DS = 0100h

data seg. start?
data seg. end?

If BX contains the
offset:

BX = 005Ah
EA = ?

Segment Register
Combinations

• Code Segment – the CS register
and IP (instruction pointer) are
used to point to the next
instruction.

• Stack – the SS register is used
with the SP (stack pointer) or
BP (base pointer)

• Data Segment – DS with BX,
SI, or DI

• Extended Segment – BX, SI, or
DI

9

More on Effective
Addresses

• There’s more than one way to
get the same effective address!

• Example:
– CS = 147Bh
– IP = 131Ah
– EA = 147B0 + 131A = 15ACAh

or
– CS = 15ACh
– IP = 000Ah
– EA = 15AC + 000A = 15ACAh

• If CS = 147B, what range of
effective addresses can be
referenced without changing the
value in CS?

