Ledure 5: Computer
Architedure

» Simpletron
— Simpletron Architecture
— Simpletron Instruction Set

— Example Programs

The Smpletron is described in C How to Program by
Harvey Deitel.

» Computer Architedure
— Registers
— Hags
— AddressCalculation

Simpletron Architedure

CPU

— The CPU contains one general-purpose register
cdled the aceimulator

Memory

— All information in the Simpletron is handled in
terms of words. A word is asigned four-digit
dedmal number such as +3364 or 0001

— The Simpletron is equipped with a 100-word
memory, and these words are referenced by
their locaion nunbers 00-99

— Before running a Simpletron Machine
Language (SML) program, it must be loaded
into memory. Thefirst instruction of every
SML program is aways placed in location 00.

— Eadh instruction occupies one word of memory.
The sign of an SML instruction is aways
positi ve, but the sign of adataword may be
either positive or negative. Each locaion in the
Simpletron’s memory may contain either an
instruction, a data value used by the program, or
an unused areaof memory.

110

— The Simpletron uses akeyboard for input and a
terminal screen for output

Simpletron

99
98 Accumulator

97 — CPU

Termina

05 Keyboard
5 S K

Instruction Set

Instruction Op code M eaning
READ 10 Realsaword from the terminal into
aspedfic locaion in memory

WRITE 11 Writesaword from a spedfic
locaion in memory to the terminal

LOAD 20 Loadsaword from aspedfic

locaion in memory into the
acamulator

STORE 21 Storesaword from the acemulator
into a specific location in memory

ADD 30 Addsaword from aspedfic locaion
in memory to the word in the
acamulator
(leavesresult in the acaimulator)

SUBTRACT 31 Subtradsaword from a spedfic
location in memory from the word in
the acaimulator

(leavesresult in the acaimulator)

Instruction Set (cont.)

Instruction Op code Meaning

BRANCH 40 Branchesto aspedficlocéionin
memory

BRANCHNEG 41 Branches to a spedfic location in
memory if the acumulator is
negative

BRANCHZERO 42 Branches to aspedfic locaion in
memory if the acumulator is zero

HALT 43 Halts

Simple Program

* Rea two numbers, add them
together, and print the sum.
* Algorithm:
read A
read B
sum=A+B
print sum
stop

Assembly Instructions

read A (reads into the memory
location used to store A)

read B

load A (puts A into the accumulator)

addB (adds B to the acawmul ator,
leaving theresult in the
acamulator)

store Sum (saves the number in the
acamulator into memory)

write Sum (writes out the result to the
terminal)

halt

Simpletron Assembly
Language = Simpletron
Madhine Language

1-1 Trandation SAL->SML
« Exeaution starts at location O

e In ou example:
— 7 ingtructions: locaions 00— 06
— 3 datavalues
* Whereto put data?
— Directly after the program, or
— In high memory, working down (99 and

lower)

(homework hint: if you use the second option, then if
you nedl to add instructions you can leave the data
whereit isand ot have to re-do all your machine
language that refersto it!)

Trandatinginto

Simpletron Madhine

Code

* First, determine which memory
locations you want to use for your

data:

—97-A

- 98-B

— 99-Sum

e Then, look up the opcodes for eac
instruction

— 1097 read A (10=read, 97 = location

of

A)

— 1098 read B (10=read, 98=B
location)

— 2097 load A (20=1load, 97=A
location))

— 3098 add B (30 = add, 98 = B location)

Tranglating, cont.

— 2199 store Sum (21 = store, 99=

sum location)

— 1199 write Sum (11 = write, 99=

sum location)

— 4300 halt (43 = halt)

99

97

Program Exeaution

(Sum)

(B)

(A)

Accumulator

4300 halt
1199 write Sum
2199 store result in Sum
3098 add AcctoB
2097 load A into Acc
1098 read valueinto B
1097 read valueinto A

Memory

Branching Example

Read two numbers from the keyboard and
print the larger value:

LOCATION CONTENTS MEANING

00
01
02
03
04
05
06
07
08
09
10

+1009
+1010
+2009
+3110
+4107
+1109
+4300
+1110
+4300
+0000
+0000

Read A
Read B
Load A
Subtrad B
If B>A, goto 07
Write A
Halt

Write B
Halt
(Variable A)
(Variable B)

Loopng Example Computer Organizaion

Use aloop to print the numbers one through 1Q
CPU

LOCATION CONTENTS MEANING Control Unit

00 +1107 Write the value of the variable Number
01 +2007 Load Number into the acaimulator

02 +3008 Increment the acumulator by 1 ALU
03 +2107 Storeincremented value bad in Number
04 +3109 Subtrad 11from acamulator

05 +4100 Goto 00if 10iterations haven't been Registers

completed
06 +4300 All done; Halt
07 +0001 (Number) Outout
08 +0001 Constant 1 (used for incrementing) Input — 7 P
09 +0011 Constant 11 (loop limit)

8086Block Diagram

Components Clpok Cortrol Bus
< : Control Unit ———
Interrupt A
« Control Unit —fetchesinstructions, FlagsR
decodes instructions, causes] v
instructions to be carried out.
. . . . ALU > P |
 Arithmetic logicd unit (ALU) —
performs arithmetic operations ax [an] ALl | instructior Address
(addition, etc.) on data. BX |BH| BL | K——
« Registers— high speed dl ox [on | e ous
egisters— high speed memory cdls paa |INterface
(don't need to go through the bus to DX [DH] DL Unit |
accesy. They vary in number and DataRegisters | ,:>
purpose on different machines. Index Registers gf;lsa
¢ Buses—communication pathways +5V ;
. . — Sl cs
connecting diff erent DI) e
devices/components. =N BP) " ss
P ES

Registers

* 8, 16, or 32 Lt high-speed
storage locaionsinside the
CPU

* They can be acessed at amuch
higher speeal than conventional
memory.

» When opgtimizing for speed, use
registers.

* Four types: genera purpose,
segment, index, status, and
control

Genera Purpose
Registers

» Dataregisters, also known as

general purpose registers: AX,
BX, CX, DX

» Used for arithmetic operations

and data movement

e Can be addressd as 16 kit or 8

bit values. For AX, upper 8 hits
are AH, lower 8 bitsare AL.

* Remember: when when a 16 bt

register ismodified, so isthe
correspondng 8 hit registers!

Example
15 0
AX AH AL
7 07 0
AH AL
AX 0000 0000 0000 0000

* move 0001 1M1 11100100 to AX
AH AL

AX 0001 1001 1110 0100

* move(0011 1D1to AH
AH AL

AX

Spedal Attributes of GP
Registers

* AX —acaimulator —fastest for

arithmetic operations. Some math
instructions only use AX.

* BX —base—thisregister can hdd an

addressof a procedure or variable.
BX can aso perform arithmetic and
data movement.

* CX —counter —thisregister adsasa

counter for repeating or loopng
instructions

* DX —data—thisregister hasa

spedal rolein multiply and divide
operations. In multiplication it holds
the high 16 hits of the product. In
division it haolds the remainder.

Segment Registers

» Segment registers are used as
base locaions for program
instructions, data, and the stack.

 All referencesto memory
involve asegment register as
the base location.

Segment Registers, cort.

» CS-—code segment —thisregister
holds the base location of all
instructions in a program

* DS - data segment —thisisthe
default base locdion for variables. It
isused by the CPU to calculate the
variable location.

e SS-stadk segment — this register
contains the base location d the
stack.

» ES-—extrasegment —thisisan
additional base location for memory
variables.

Index Registers

* Index registers contain the
off sets of data and instructions.

» Offset refers to the distanceof a
variable, label, or instruction
from its base segment.

* Index registers are used when
processng strings, arrays, and
other data structures.

Index Registers, cont.

¢ BP - base pointer —this register
contains an off set from the SS
register andis often used by
subroutines to find the variables
pasd to it on the stack.

* SP-—stad pointer — this register
contains the offset from the top of
the stadk. The complete top of stadk
addressis caculated using the SP
and SSregisters.

e Sl —sourceindex — used to point to
datain memory. Named because
thisisthe index register commonly
used as the source in string
operations (for example€)

¢ DI - dedtination index —index
register commonly used asthe
destinationin string operations

Status and Control
Registers

* |P—instruction panter —aways
contains the off set of the next
instruction. The IP and CS
registers combine to form the
complete aldress IPisalso
known as PC — the program
courter.

Flags— a spedal register with
individual bit positions that give
the status of the CPU (control
flags) or results of arithmetic
operations (status flags).

Status Flags

These indicate the status of
arithmetic andlogicd operations.

Carry flag (CF) — set if the result of
an ursigned operation istoo kigto
fit into the destination. 1 = carry, 0 =
nocary.

Overflow flag (OF) — set if the result
of asigned operationistoowideto
fit into the destination. 1 = overflow,
0=no overflow.

Sign flag (SF) — set when the result
of an operation is negative. 1=
negative, 0 = pasitive

Status Flags, cont.

Zero flag (ZF) — set when the result
of an arithmetic operationis zero.
Used by branch and loop instructions
when comparing values. 1 = zero, 0
= not zero.

Auxili ary Carry — set when an
operation causes a cary from bit 3to
bit 4 or aborrow from bit 4 to bit 3.
1=cary, 0=nocary.

Parity —indicates if the result of an
operation has an even or odd rumber
of bits. Used to verify memory
integrity or corred transmisson d
data.

Addressng

Address anumber referring to an &
bit memory location

Logicd addresses go from 0 to the
highest location

How these aetrandated into
physical addresses varies.

For Intel:

— 32-bit segment-off set address
combination of base location (segment)
and off set to represent alogicd location

— 20-bit absolute aldress, which refersto
aphysical memory location

1)

2)

Addressng, cont.

Problem: how to address1,0438576
bytes of memory with a 16-bit
wide addressregister (where the
max is 65,535)

Solution: combine segment and
off set values to obtain the absolute
address

Example: 08F1:0100

convert segment to absolute by
adding 4 zero hits: 08F10

add the off set: 0100 (hex)
08F10 --segmentvaluew/extra4 0bits
+0100 --addthe offset

090 10 -- obtain the @solute address
(effedive aldres9y

Why Segment-Offset?

* You can load the program at any
segment addressand individual
variable addressesto not need to be
recdculated.

— Why? Variablelocaions are 16-bit
offsets from the program’s data area

— Thisisknown as being segment
relocatable.

* Programs can accesslarge data
structures by modifying the segment
portion of the data’ s addressto pant
to new blocks of memory.

FFAFF

00000

Data Segment

addressable memory on 80%

Example:
DS=0100h
dataseg. start?
dataseg. end?

If BX containsthe
offset:

BX =005Ah
EA =7

Segment Register
Combinations

» Code Segment — the CS register
and IP (instruction panter) are
used to pdnt to the next
instruction.

» Stadk —the SSregister is used
with the SP(stack pointer) or
BP (base pointer)

» Data Segment — DS with BX,
S|, or DI

» Extended Segment —BX, Sl, or
DI

More on Effedive
Addresss

* There’'s more than ore way to
get the same dfedive aldresd
» Example:
—CS=147h
—IP=131Ah
— EA = 147B0 + 131A = 15ACAh

or

— CS=15ACh

—IP=000Ah

— EA =15AC + 000A = 15ACAh

» If CS=147B, what range of
eff ective aldresses can be
referenced withou changing the
valuein CS?

