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Class 4: Representing 
Information: Floating 

Point
• Floating Point Representation

• Floating Point Arithmetic

• IEEE Floating Point Formats

• ASCII

Simple Floating Point 
Format

• Scientific notation:
n = f x 10e, where

• f is the fraction, or mantissa and
• e is a positive or negative integer 

called the exponent

• The computer representation 
version of this is called floating 
point

• Examples:
32.67 = 3.267 x 101

-0.25 = - 2.5 x 10-1

Floating Point Addition 
and Subtraction

• First, adjust the values so the 
exponents are the same.

• Then, add or subtract the 
mantissas.

• Limited precision floating point 
may require numbers to be 
rounded or truncated in order to 
fit into the number of bits 
available for the mantissa, 
resulting in a loss of accuracy.

Floating Point 
Multiplication and 

Division
• If multiplying, add the 

exponents and multiply the 
mantissas.

• If dividing, subtract the 
exponents and divide the 
mantissas.

• Example:
1.2e3 * 2.0e2 = 2.4e5 (240000)

1.2e3 / 2.0e2 = 0.6e1 (6)
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Comparing Floating 
Point Numbers

• There are inaccuracies present in any 
computation.

• This makes comparisons very 
dangerous.

• Testing for equality is not a good 
idea.

• If absolutely necessary, find an error 
that you will allow (a tolerance) and 
check to see if the two values are 
within the error range, rather than 
absolutely equal.

IEEE Floating Point 
Formats

• Three floating point formats:
– 32 bit single precision

• 1 sign bit
• 8 exponent bits
• 24 mantissa bits

– 64 bit double precision
• 1 sign bit
• 11 exponent bits
• 53 mantissa bits

– 80 bit bit extended precision
• 1 sign bit
• 15 exponent bits
• 64 mantissa bits

• Notice: for single and double 
precision numbers the total is one bit 
too many!  Why?

Single Precision 
Floating Point

• Sign – one bit 0 for positive, 1 for 
negative

• Exponent – eight bit, excess-127 
format (add 127 to actual exponent 
value)

• Mantissa – 23 bit sign magnitude 
(sign bit gives sign). 24th (high 
order) bit is always one and not 
stored. 

31 23 0

exponent mantissa
sign

Normalization

• To get maximum precision, 
computations use normalized values.

• A normalized floating point value is 
one where the higher order mantissa 
bit is equal to one.

• This is done by shifting the bits to 
the left and decrementing the 
exponent for each shift until the left-
most bit is one.

• So how can you store a 24 bit 
mantissa in 23 bits?
– If the left-most bit is always one, then 

you don’ t need to store it!
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Normalization, cont.

• So how does normalization work?
• Each shift left is the equivalent of 

multiplying by two.
• Decrementing the exponent is the 

equivalent of dividing by two.
• Example:

0011e4 = 3 * 24 = 48
0110e3 = 6 * 23 = 48
1100e2 = 12 * 22 = 48

• Since the left most bit is always one 
in a normalized number, you can 
save a bit of storage by not storing it.

• Example:
27.4 decimal

• First, convert to binary
2710 = 0001 1011

.4 = ?

.4 * 2 = 0.8 
�

0, .8 left

.8 * 2 = 1.6 -> 1, .6 left

.6 * 2 = 1.2 -> 1, .2 left

.2 * 2 = 0.4 -> 0, .4 left

.4 * 2 = 0.8 – this will repeat!

so,

27.4 = 11011.0110 * 20

Converting to Single 
Precision

• Next, need to normalize:
27.4 = 00011011.0110 * 20

= 1.10110110 * 24

• Compute exponent, extend to eight bits if 
necessary (not needed in this case):
exponent = 410 + 12710 = 13110

13110 = 100000112

• Shift mantissa by one bit (since higher 
order one bit is implied) and extend the 
repeating portion for the appropriate 
number of bits (23)
10110110011001100110011

• Result:
0 10000011 1011011
0011001100110011

Converting to Single 
Precision, cont.

Another example

• 16.2 decimal
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Converting from Single 
Precision into Decimal 

Floating Point
• Example:

BD500000h

• First, convert to binary:
BD500000h = 1011 1101 0101 

0000 0000 0000 0000 0000

• Then, pull out the various 
components:
– Sign – negative
– Exponent – 01111010
– Mantissa – 101 0000 0000 0000 

0000 0000

Converting from Single 
Precision into Decimal 

Floating Point
• Convert the exponent:

01111010 = 64 + 32 + 16 + 8 + 2 = 122 
(excess-127)

122 – 127 = -5
exponent = -5

• Convert the mantissa:
101 0000 0000 0000 0000 0000
adding the missing bit = 1.101

• Create the binary result:
1.101 * 2-5 = 0.00001101
= 1/32 + 1/64 + 1/256 = (8 + 4 + 1)/256
= 13/256 = .05078125

• Don’ t forget the sign!
answer = -0.05078125

• BE400000h in IEEE?

ASCII

• ASCII (American Standard Code for 
Information Interchange) is 
commonly used to represent 
characters sent to a display

• This is what is used to display 
information (letters, symbols, 
numbers, and control characters).

• Examples:
‘A’ = 41h = 6510 

‘a’ = 61h = 9710 

‘!’ = 21h = 3310 

‘1’ = 31h = 4910 

CR (carriage return) = 0Dh = 1310 


