
1

Class 4: Representing
Information: Floating

Point
• Floating Point Representation

• Floating Point Arithmetic

• IEEE Floating Point Formats

• ASCII

Simple Floating Point
Format

• Scientific notation:
n = f x 10e, where

• f is the fraction, or mantissa and
• e is a positive or negative integer

called the exponent

• The computer representation
version of this is called floating
point

• Examples:
32.67 = 3.267 x 101

-0.25 = - 2.5 x 10-1

Floating Point Addition
and Subtraction

• First, adjust the values so the
exponents are the same.

• Then, add or subtract the
mantissas.

• Limited precision floating point
may require numbers to be
rounded or truncated in order to
fit into the number of bits
available for the mantissa,
resulting in a loss of accuracy.

Floating Point
Multiplication and

Division
• If multiplying, add the

exponents and multiply the
mantissas.

• If dividing, subtract the
exponents and divide the
mantissas.

• Example:
1.2e3 * 2.0e2 = 2.4e5 (240000)

1.2e3 / 2.0e2 = 0.6e1 (6)

2

Comparing Floating
Point Numbers

• There are inaccuracies present in any
computation.

• This makes comparisons very
dangerous.

• Testing for equality is not a good
idea.

• If absolutely necessary, find an error
that you will allow (a tolerance) and
check to see if the two values are
within the error range, rather than
absolutely equal.

IEEE Floating Point
Formats

• Three floating point formats:
– 32 bit single precision

• 1 sign bit
• 8 exponent bits
• 24 mantissa bits

– 64 bit double precision
• 1 sign bit
• 11 exponent bits
• 53 mantissa bits

– 80 bit bit extended precision
• 1 sign bit
• 15 exponent bits
• 64 mantissa bits

• Notice: for single and double
precision numbers the total is one bit
too many! Why?

Single Precision
Floating Point

• Sign – one bit 0 for positive, 1 for
negative

• Exponent – eight bit, excess-127
format (add 127 to actual exponent
value)

• Mantissa – 23 bit sign magnitude
(sign bit gives sign). 24th (high
order) bit is always one and not
stored.

31 23 0

exponent mantissa
sign

Normalization

• To get maximum precision,
computations use normalized values.

• A normalized floating point value is
one where the higher order mantissa
bit is equal to one.

• This is done by shifting the bits to
the left and decrementing the
exponent for each shift until the left-
most bit is one.

• So how can you store a 24 bit
mantissa in 23 bits?
– If the left-most bit is always one, then

you don’ t need to store it!

3

Normalization, cont.

• So how does normalization work?
• Each shift left is the equivalent of

multiplying by two.
• Decrementing the exponent is the

equivalent of dividing by two.
• Example:

0011e4 = 3 * 24 = 48
0110e3 = 6 * 23 = 48
1100e2 = 12 * 22 = 48

• Since the left most bit is always one
in a normalized number, you can
save a bit of storage by not storing it.

• Example:
27.4 decimal

• First, convert to binary
2710 = 0001 1011

.4 = ?

.4 * 2 = 0.8
�

0, .8 left

.8 * 2 = 1.6 -> 1, .6 left

.6 * 2 = 1.2 -> 1, .2 left

.2 * 2 = 0.4 -> 0, .4 left

.4 * 2 = 0.8 – this will repeat!

so,

27.4 = 11011.0110 * 20

Converting to Single
Precision

• Next, need to normalize:
27.4 = 00011011.0110 * 20

= 1.10110110 * 24

• Compute exponent, extend to eight bits if
necessary (not needed in this case):
exponent = 410 + 12710 = 13110

13110 = 100000112

• Shift mantissa by one bit (since higher
order one bit is implied) and extend the
repeating portion for the appropriate
number of bits (23)
10110110011001100110011

• Result:
0 10000011 1011011
0011001100110011

Converting to Single
Precision, cont.

Another example

• 16.2 decimal

4

Converting from Single
Precision into Decimal

Floating Point
• Example:

BD500000h

• First, convert to binary:
BD500000h = 1011 1101 0101

0000 0000 0000 0000 0000

• Then, pull out the various
components:
– Sign – negative
– Exponent – 01111010
– Mantissa – 101 0000 0000 0000

0000 0000

Converting from Single
Precision into Decimal

Floating Point
• Convert the exponent:

01111010 = 64 + 32 + 16 + 8 + 2 = 122
(excess-127)

122 – 127 = -5
exponent = -5

• Convert the mantissa:
101 0000 0000 0000 0000 0000
adding the missing bit = 1.101

• Create the binary result:
1.101 * 2-5 = 0.00001101
= 1/32 + 1/64 + 1/256 = (8 + 4 + 1)/256
= 13/256 = .05078125

• Don’ t forget the sign!
answer = -0.05078125

• BE400000h in IEEE?

ASCII

• ASCII (American Standard Code for
Information Interchange) is
commonly used to represent
characters sent to a display

• This is what is used to display
information (letters, symbols,
numbers, and control characters).

• Examples:
‘A’ = 41h = 6510

‘a’ = 61h = 9710

‘!’ = 21h = 3310

‘1’ = 31h = 4910

CR (carriage return) = 0Dh = 1310

