Ledure 24: Sample
MicroArchitedure

Control Unit

ALU

Registers
Instructions
Instruction Deaoding
Microlnstructions

Abou the Sample
MicroArchitedure

» Sample Microarchitecture — a
leaning toal

» Generated from multiple
sources (by Prof. Hamel)

* Why not use Intel?

Control Unit

Control unit —
MAP —
Control memory (Control store)

MUX condtional codes—

ALU

* ALU has three comporents:

* ALU Functions:

ALU, cornt.

 Shift functions:

» A andB latches are used to
present stable datato the ALU

e StatusbitsareN and Z
(described earlier)

Internal Registers

» We've seen registers that the
programmer has accessto (for
Intel: AX, BX, ...).

 Units within the processor (such
asthe oontrol unit or ALU)
have their own interna
registers.

MicroArchitedure
Registers

» Genera Registers:
— ACC (Register 0):

— PC (Register 1):

— IR (Register 2):

— TMP (Register 3):

— AMASK (Register 4):

— 1 (Register 5):

MicroArchitedure
Registers

 Other Registers:
- MAR:
—MBR:

- MIR:

- MPC:

Microlnstructions

» Microinstructions contain many
fields, each controlling a
different unit.

— Commands (such as RD, WR) —
set to oneto send asignal onthe
respedive ntrol lines.

— Function codes (such as ALU,
SH) — represent which operation
isrequired by the ALU or shifter.

— Addresses (such as A, or B) —
give the register number that
should be operated on

Instruction Set

* To keep things smple, we'll be
using asimplified macine
language (NOT Intel!)

* In this machine language
instructions are 16 hbts:

— high-order 3 bits are the opcode
— low-order 13 hts are the address

|nstruction Set, cont.

» Our instructions:

Instruction | Op Code | Description

ADD 000 ACC:=ACC+(A)
SUB 001 ACC:=ACC-(A)
LOAD 010 ACC = (A)

STORE |011 (A) :=ACC

JUMP 100 PC:=A

JZER 101 IFACC==0JUMP A

* A —our operand address(lower
13 [tsof the instruction)

Instruction Deaoding

» The opcode needsto be decded
S0 we can determine what
portions (“subroutines’) of the
microprogram apply.

» One method adeoding tree

— microprogram makes as many
comparisons as there ae opcode
bits:

IR bit0
RS
IR bit1 IR bit1
1
NN

IR bit2 IR bit2

/N /N

Instruction Deaoding,
cor.

 Time consuming!
* More mwmmon methods:
— jump tables
* jump to thetable

* jump to the spot in the table with the
address

* jump to the address
— Mapping memory
* opcode goes to speda memory to
find the start address.

The Microprogram
* inweb handou

Microl nstruction Format
Types

» Horizontal microinstructions —

» Vertical microinstructions —

* Mixed

Our Microinstructions

» Our control storeisa64x27 bit read-
only memory.

* Microinstruction format (and
#hits/field) is:

* picture from handout

Microlnstruction Fields

* handou

Microprogram Syntax

Micro Aseembly Language (MAL)
One microingtruction per line

Parts of instruction are separated by
semi-colons and given in the order in
which they are caried out.
e Assgning avalue, use “:="

MAR :=PC
Jumps within the microcode are
indicated by goto <line#>

— goto 25

Microprogram Syntax,
cont.

» Conditionals arewritten using if
<condition> then

e ALU functions:
— addition

—and
— pass(default)

— complement (1's complement)

Microprogram Syntax,
cont.

* Shifting:
— right shift

— left shift

Microprogram Syntax,
cornt.

e ALU and Shift functions can be
combined:
— adding, then shifting:

TMP = Ishift(IR + IR)
—adds IR and IR, then shifts left
and storesthe result in TMP

* AnALU functionanda
condtional jump can be
combined on oreline:
TMP = TMP; if N then goto 21

