Lecture 21: Combinational Circuits

- Integrated Circuits
- Combinational Circuits
 - Multiplexer
 - Demultiplexer
 - Decoder
 - Adders
 - ALU

Integrated Circuits

- Circuits use modules that contain multiple gates packaged together, rather than individual gates.
- These are called Integrated Circuits (ICs, chips)
 - SSI (small scale integration): 1-10 gates/chip
 - MSI (medium scale integration): 10-100 gates/chip
 - LSI (large scale integration): 100 – 100,000 gates/chip
 - VLSI (very large scale integration): more than 100,000 gates/chip

Integrated Circuits, cont.

- Current technology could put 5 million NAND gates on a chip!
- But… that chip would need 15,000,002 pins.
- With standard pin spacing, an 18km long chip.
- Instead, circuits are designed with a high gate/pin ratio.

• TTL example (older Tannenbaum)
Combinational Circuits

- Def: a set of interconnected gates whose output at any time is a function of the input at that time.
- The appearance of input is followed almost immediately by output, with only gate delays.

Multiplexer (MUX)

- A circuit that goes from many inputs to one output.
- The select lines are used to pick one of the input lines to directly output to the output line.

MUX Diagram

- S1 and S0 are connected to AND gates in such a way that for any combination of S0 and S1, 3 of the AND gates will output 0
- The 4th AND gate will output the value of the selected input line.
- So, 3 inputs to the OR-gate will always be 0, and the output of the OR-gate will equal the value of the selected input gate.
Multiplexer Uses

- Device controllers
- Parallel-to-serial data converter

Demultiplexer

- Reverse of Multiplexer:
 - Control lines choose which of the output lines will get the input bit (the rest of the output lines will get 0)

Demultiplexer, cont.

Decoder

- A circuit that asserts one output line, depending on a pattern of input lines.
- In this circuit, inputs are the select lines. The line they select gets a one, all other lines get zero.
Decoder, cont.

Decoder Uses

- Address decoding
 - Suppose you wish to construct a 1K-byte memory using 4 256x8-bit RAM chips. Want a single unified address space.
 - Address Chip
 - 000-0FF 0
 - 100-1FF 1
 - 200-2FF 2
 - 300-3FF 3
 - Each chip needs 8 address lines (256 bits). These are supplied by the low-order 8-bits of the address.
 - High-order 2 bits (of the 10-bit address) are used to select 1 of 4 chips.

Adders

- Truth table for 1-bit addition:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Sum</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- This can be drawn using our previous method:

 - Or, we could notice that the Sum is the XOR of A and B:

 - This circuit is known as a Half-Adder.
Half-Adder vs. Full Adder

• To be useful for arithmetic, need to also consider carry-in:

\[
\begin{align*}
1011 + 0011 &= 10 \\
\text{half-adder computes this correctly} \\
\text{half-adder wouldn’t calculate this correctly}
\end{align*}
\]

Full-Adder

• For multiple-bit addition, need a full adder.
• Truth table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>CarryIn</th>
<th>Sum</th>
<th>CarryOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Full-Adder, cont.

• For sixteen bit words, wire together 16 1-bit full adders.
 – Wire CarryIn for lowest bit to zero.
 – CarryIn for the remaining bits should be wired to the CarryOut of the previous bit.

Arithmetic Logic Units

• Most computers have a single circuit for performing AND, OR, and sum of two words.
• For n-bit words, built from n identical circuits or individual bit positions.
• These are known as 1-bit ALUs or bit slices.
ALU

- Figure 3-19 from Tannenbaum.