
1

Class 2: Numbering
Systems

• Numbering systems
– Decimal

– Binary

– Hexadecimal

• Hexadecimal to Binary
Conversion

• Data Organization

• Homework 1 -> due a week
from today!

Why different
numbering systems?

• When we do arithmetic, we normally use
the decimal numbering system (base 10)
with digits from 0 to 9.

• Most computer systems operate using
binary logic where values are represented
using voltage levels (usually 0v and +5 v).

• This corresponds well to the binary
numbering system which represents
numbers using 0 and 1.

• Working with binary is very cumbersome
(the numbers get very long) so other
numbering systems that work with powers
of two are usually used. The most
commonly used is hexadecimal (base 16)
with digits from 0 to F.

Different ways of
representing the same

value

• How many frogs?
– 12 decimal

– C hexadecimal

– 14 octal

– 1100 binary

Decimal System
(a review)

• Commonly used by: people!

• Each digit represents a power of 10

• Digits go from 0 to 9

• Also known as Base 10

• Example:

12310 =

If moving to the right of the decimal
point, powers decrease:

2.4510 =

2

Binary System

• Used by: computer internal
representation.

• In binary, each digit represents
a power of 2.

• Binary numbers are made
entirely of 0 and 1.

• Also known as Base 2.

• Binary digits are also known as
bits.

Binary System,
continued

• For convenience, a numeric
value can be assigned to each
bit position:
x7 x6 x5 x4 x3 x2 x1 x0

• The right most bit is position
zero, also known as the low
order bit.

• The left most bit known as the
high order bit.

• Example:
01012 =

Binary to Decimal
Conversion

• Since each digit is a power
of two, conversion is done
by multiplying the digit by 2
to the power of the bit
position.

• Examples:
1012 =

110010102 =

Decimal to Binary
Conversion: Method 1

• Divide by Decreasing Powers of
2
– Find the largest power of 2 that

fits the number

– The bit for that power will be set

– Repeat with the remainder from
the division

Example: Converting 7610 to Binary

3

Decimal to Binary
Conversion: Method 2

• That method works well by
hand but you need to know the
powers of two.

• A better method to automate on
the computer is to repeatedly
divide by 2

-- picture from Irvine, p 575

Hexadecimal System

• Used by: Debug utili ty.

• Also used as a more compact
way to represent numbers rather
than binary.

• In hexadecimal (or hex), each
digit represents a power of 16.

• Digits are 0 to 9 and A to F.

• Hexadecimal numbers are
denoted by the number,
followed by an H or h.

Decimal to Hex
Conversion

• A good method is to repeatedly
divide by 16.

• Example: Converting 15,26810

to hexadecimal

Hex to Decimal
Conversion

• Convert each digit to decimal.

• Multiply the digit by 16 to the
power of the bit position.

• Example:
3BA4h =

4

Converting between Hex
and Binary

• This is where the advantage of a
hexadecimal representation is
clear!

• Each hexadecimal digit
represents four binary digits.

• Lookup tables (or, better yet,
memorized bit patterns) can be
used to do the conversions.

• No multiplication or addition
required!

Binary/Hexadecimal
Conversion Table

• from AoA

Binary to Hexadecimal

• First, break the number up into
four digit (bit) pieces, starting
from the least significant (right-
most) bit

• Then convert each four digit
segment into the corresponding
hexadecimal digit

• Example:
10101011100101111000011011100101

Hexadecimal to Binary

• Convert each hex digit into the
four digit (bit) binary
representation

• Example:
8A2640

5

Data Organization

• Computers work with groups of
bits (binary digits)

• Common groups of bits are:
– Single bits

– Groups of 4 bits – nibbles

– Groups of 8 bits – bytes

– Groups of 16 bits – words

– Groups of 32 bits – double words

Bytes

Bit numbering in a byte:

7 6 5 4 3 2 1 0

High Order
Nibble

Low Order
Nibble

A byte can represent values:
0..255 (unsigned)
-128..+127 (signed)

or, special data types that require no
more than 256 different values

Words

Bit numbering in a word:

151413 121110 9 8

High Order
Byte

Low Order
Byte

A word can represent values:
0..65,535 (unsigned)
-32,768..+32,767 (signed)

7 6 5 4 3 2 1 0

