
1

Lecture 18

• Assembly

• Linking and Loading

• Assembling Separate Files
(review)

• C++/Assembly Interface
(needed for Lab 5!)

Assembly Process
(Review)

• Assembler translates symbolic
assembly language program into
numeric machine code.

Forward References

mov ax, 0

cmp ax, bx

jge next ;can’ t assemble

….

next:

Some Solutions

1. When a forward ref. is found:
• put the statement in a table
• at the end of the pass, assemble

the statements in the table
• disadvantage?

2. More common: two pass
assembly

• pass 1 – build symbol table
• pass 2 – assemble code

2

Pass 1

• Builds the symbol table, uses an
opcode table.

• Symbol table – one entry for
each user-defined symbol in the
program. Symbols defined by
equates or used as labels.

Symbol Table Example

AddNumer EQU 12h

ArraySize EQU 3h

.data

TestArray DW 1, 2, 3

.code

Start: MOV AX, offset TestArray

Next: PUSH AX

MOV AX, AddNumber

PUSH AX

….

Symbol Table, cont.

• Location counter – set to zero at
the beginning, increased by the
instruction length for each
instruction processed.

• Opcode table – used to look up
length of each instruction.

OpCode Table

• Instruction length – used to
update the location counter in
pass 1

• Instruction class – sends the
assembler off to a routine tht
process all similar instructions
(all reg-to-reg for example)

3

Pass 2

• Assembler goes through program
again, using the symbol table and
opcode table to generate machine
code.
– LEA AX, TestArray

LEA – assembler looks up opcode in
opcode table

TestArray – assembler plugs in the value
from the symbol table along with any
relocation information.

• Assembles instruction, places in
output buffer.

Linking and Loading

• Large programs are developed
as independently-assembled
modules.

• Problems addressed by linker:
– relocation problem

– external reference problem

• Example from old version of
Tanenbaum (figure 7-13, 7-14)

Separately Assembled
Files (review)

• Basic problem – B is referred to
in one module, defined in
another. We need to hook them
together.

• Points to note:
– only one module should have

.startup and .exit

– only one module should set up the
stack (both modules will share the
same stack)

4

Global Label Definition

• Assembler destroys the symbol
table after assembly – assumed
scope of labels is local.

• To declare them as global:
PUBLIC – use this when they are

defined; makes the symbol global
and keeps the definition for the
linker.

EXTRN – use this when label is
referenced.

EXTRN formats

• EXTRN Name:Type
– Type:

• Byte, Word, Dword for data

• Near, Far for procedures

• or Proc, which defaults to Near for
a small memory model.

• external procedure call
example, Irvine P. 335

High Level Language
Interface

• Frequently only parts of an
application are written in
assembly language:

• Must understand HLL’s:

5

Naming Convention

• C pre-pendsan underscore to
external identifiers:
extern int addem(int num1, int num2)

…

total = addem(5,6)

• in assembly language subroutine,
define:
PUBLIC _addem

• C expects the case to be the same in
both modules.

Memory Model

• small i s used by default but it
can be changed.

.model small

Calli ng Conventions

• C passes parameters in reverse order:

• C expects function results in a
register:

• Types of parameters?

Returning from ASM to
C

• C generates code to clean up the
stack (remove the parameters).

• The ASM module should use
RET with no argument.

6

/* This C program computes (A**2 + B**2)
/ (C**2) by calli ng

the separately-assembled routine
SQUARIT.

C pushes the parameters on the stack in
reverse order. */

#include <stdio.h>

main()
{

extern void SQUARIT(int, int, int,
int *);

int a=5;
int b=3;
int c=2;
int ans;

SQUARIT (a, b, c, &ans);
printf ("The answer is: %d\n", ans);

}

; This routine does the computation (A**2 + B** 2) / (C**2).
; Assumption: the result of the computation fits in 16 bits.
; It expects the address of ans on the stack, then the
; constants c, b, and a as input parameters.
; Memory is dynamically allocated for local variables.
; The C program expects the entry point to the procedure
; to be a label beginning with the character '_'.
; The C program cleans up the stack.
;

PUBLIC _SQUARIT
.model small

.code

_SQUARIT:

push bp ;initialize reference point to
mov bp, sp ;this stack frame
push ax ;save registers used by this procedure
push dx
push di
mov ax, [bp+4] ;mov A into AX
imul word ptr [bp+4] ;A * A
mov [bp-8], ax ;store A*A as a local variable
mov ax, [bp+6] ;mov B into AX
imul word ptr [bp+6] ;B * B
mov [bp-10], ax ;store B*B locally
mov ax, [bp+8] ;C
imul word ptr [bp+8] ;C * C
mov [bp-12], ax ;store C*C locally
mov ax, [bp-8] ;get A*A
add ax, [bp-10] ;A*A + B*B
cwd ;A*A + B*B in DX:AX
idiv word ptr [bp-12] ;divide by C*C (answer in AX)
mov di, [bp+10] ;put address of ans in DI
mov [di], ax ;store result at ans
pop di ;restore registers
pop dx
pop ax
pop bp
ret ;calli ng program responsible
end ;for adding 8 to sp

Interfacing with Visual
C++

• You’ ll get to try it in lab!

• Biggest difference: Visual C++
generates 32-bit applications.

/* This C program computes (A**2 + B**2) / (C**2)
by calli ng
the separately-assembled routine SQUARIT.
C pushes the parameters on the stack in reverse
order. * /

#include <stdio.h>
extern "C" int SQUARIT(int, int, int, int *);

main()
{

int a=5;
int b=3;
int c=2;
int ans;

SQUARIT (a, b, c, &ans);
printf ("The answer is: %d\n", ans);

}

7

.386
PUBLIC _SQUARIT
.model small

.code

_SQUARIT:

push ebp ;initialize reference point to
mov ebp, esp ;this stack frame

push eax ;save registers used by this procedure
push edx
push edi

mov eax, [ebp+8] ;mov A into AX
imul dword ptr [ebp+8] ;A * A
mov [ebp-16], eax ;store A*A as a local variable

mov eax, [ebp+12] ;mov B into AX
imul dword ptr [ebp+12] ;B * B
mov [ebp-20], eax ;store B*B locally

mov eax, [ebp+16] ;C
imul dword ptr [ebp+16] ;C * C
mov [ebp-24], eax ;store C*C locally

mov eax, [ebp-16] ;get A*A
add eax, [ebp-20] ;A*A + B*B
cdq ;A*A + B*B in EDX:EAX
idiv dword ptr [ebp-24] ;divide by C*C (answer in AX)
mov edi, [ebp+20] ;put address of ans in EDI
mov [edi], eax ;store result at ans

pop edi ;restore registers
pop edx
pop eax
pop ebp

ret ;calli ng program responsible
end ;for adding 16 to esp

