Ledure 16: Passng
Parameters on the Stadk

* Quick Stack Review
» Pasdng Parameters on the Stack
 Binary/ASCII conversion

Pop Examples
;initial SP=01FC
pop BX
pop DX +—S300
BX = OEEEh
DX =0AF8

If we wereto pop
again, the next
value popped
off would be
0124.

EE

OE

F8

0A

24

01

01FB
01FC
01FD
O01FE
01FF
0200 ~—SSSP
0201

Push Examples
;assume SP=
0202
mov ax, 124h «—SS00
push ax .
push 0af8h .
push Oeech
01FB
EE 01FC «——SSSP
OE 01FD
F8 01FE
0A 01FF
24 0200
01 0201
CALL and RET

» CALL —pushesIP onthe stack
(recal, IP halds the aldressof
the next instruction), puts the
addressof the label (subroutine)

into IP.

* RET — popsthe stack into IP to
return to the point at which the
subroutine was cdl ed.

Passng Parameters
using Registers

* We' ve been using registersto pass
parameters (when? for the INT 21hcdls!)
e You can also useregistersto pass abase
address of agroup of memory locations.
» Example—our keyboard bufer:
maxlen db 20 ; max charstoinput

aduallen db ? ;DOSwill put the
number read here

inbuf db 20 dup (**) ; where DOS
will put the dataread in

— If you load the address of maxleninto a
register (using MOV BX offset maxlen)
before cdling the subroutine then the
subroutine will be able to aaess the
other data members by using indired
addressing.

Passng Parameters
Using Registers, cont.

» Advantages:
— Easy for passng a small number
of parameters
— Useful for passng the start
addressof ablock of parameters
* Problems:

— There ae only four genera
purpose registers (AX, BX, CX,
DX) and they are needed for
many things.

Passng Parameters
using the Stack

* For severa parameters, it's

better to use the stack.
(thisiswhat high level

languages do)

» Beforethe CALL, push the
parameters on the stack.

* But... youcan't just popthem
off again in your program...
why?

Pasdng Parameters on
the Stadk, cont.

* When you exeaute CALL, it
pushes IP on the stack.

* If your cdled routine exeautes a
popit won't get a parameter, it
will get the return IP.

SS00—
push paraml
push param2
IP — SSSP 4 mysub
param2
paraml

Note: stack drawn as 16-bit WORDS

Getting at Our
Parameters

* You can popthe IP off the stack
and then get your data.

— Don't do this!!!!

— If youforget to put IP badk on
top, youwill return off into never-
never land!

* A better solution— use the BP
register!

— BP workslike BX except it holds

an offset from SS(recdl BX
holds an off set from DS)

Indired Addressng
Using BP
mov ax, [bx] ; thismovesthe
; word at DS:BX
; into AX
mov dx, [bp] ; thismovesthe

; word at SSBP
; into DX

» youcan aso useindired addressng
with dsplacement:
mov ax, [bp + 2] ;take the aldress

;in BP, add 2

;load AX with the
:contents of the word at
;that address.

Setting upa Stadk Frame

» Parameters are passed onthe
stadk by setting up a stack
frame.

— The alling routine pushes the
parameters on the stack.

— The CALL instructionis used to
cdl the subroutine.

— The subroutine pushes BP onthe
stadk (why?).

— The subroutine copiesthe value in
SPinto BP so it can be used to
retrieve the variables.

Stadk Frame Example

« After cdling our subroutine:

SS00

odIP

6

5

push 5
- push 6
SSSP cdl mysub
[SP+2]
[SP+ 4]

Note: stack drawn as 16-bit WORDS

old IP? Thereturn address— thisisthe offset of
theinstruction immediately after thecall.

Stack Frame Example,

cont.
» Save andset upBP (in
procedure mysuby):
SS—»
odBp |— SPBP mysubproc
push bp
oldIP mov bp sp
6 [BP+4]
5 [BP+6]

Note: stack drawn as 16-bit WORDS

Retrieving Parameters

» Useindired addressng with

displacement:
SS—»
old BP l«— SPBP movax, [BP+4]
;aX=6
oldIP mov cx, [BP + 6]
[BP+4] ;ex=5

[BP+ 6]

Note: stack drawn as 16-bit WORDS

TITLE Demonstrates parameter passng on the stack

; This program adds a @nstant value to ead element of an array.
; It usesaprocedure, and parameters are passed on the stadk in

; thefollowingorder: the start addressof the aray, the mnstant
; vaueto be alded, and the number of elementsin the aray.

.model small
.stack 100H

AddNumber EQU 12H ;number to be alded
ArraySize EQU 9H

.data
TestArray DW 3AH, 4AH, 5AH, 6AH, 7AH, 1234H, 56 78H
DW 9ABCH, ODEFH

.code

Startup

mov ax, offset TestArray
push ax

mov ax, AddNumber
push ax

mov ax, ArraySize
push ax

cdl Arraylnc

nop

.exit

Arraylnc PROC

push
mov

push
push
push
push

mov
mov
mov

next. mov
add
mov
add
loop

pop
pop
pop
pop

pop
ret

Arraylnc ENDP
end

NEAR

bp

bp,sp ;set up frame for thiscdl

ax ;save registers destroyed by this
bx ;procedure

cx

dx

cx, [bp+4] ;sizeof array

ax, [bp+6] ;the cnstant to be alded
bx, [bp+8] ;start addressof array

dx, [bx] ;get array element

dx,ax ;add constant to it

[bX], dx ;storeit badk inarray

bx, 2 ;point to next array element
next

dx ;restore registers
cx
bx
ax
bp
;returns

What’s Wrongwith this :
g 5 Cleaning upthe Stadk
Example”

* What you should dois clean upthe
stadk using RET x, where x isthe
number of bytesto addto SP after
the return:

RET 6 ;clean upthe 6 bytes of
;parameters by adding
;6 to SP after popping IP
Using the Stadk for PassBy Referencevs.
Locd Variables PassBy Vaue
« Onceyou ve set up your stack » The book talks about passby value
frame, you can useit for local and passby reference
variables as well: — Passby value — the value of the
parameter is passed into the subroutine
— Passhy reference — the address of the
8 « SR[BP-4] puh7 parameter is passed into the subroutine
push 8 (wejust saw thisin the array example!)
7 [BP-2] « Either the registers or the stack can
oldgp |~ BP mov bx, [BP-2] be used to passby value or by
bx=7 reference.
old1P mov dx, [BP—4] * Why doesit matter? Passby
6 [BP+4] dx=8 reference is used if youwant the
5 [BP+6] procedure to modify avariable.
Note: stack drawn as 16-bit WORDS

ASCII-Binary
Conversions

In ahigh-level language, you just
read the number:

— read (num) or

— scanf(*%d", &num),

— cin>>num, or...

¢ What' s going on behind the scenes?

Say the user enters 361
— They enter 3 separate keys: “3", “6”,
“qn
— Thesecomein as ASCII values

— They must be converted into the integer
361and stored.

Algorithm (in Pseudo-
Code)

Result <- 0
Multiplier <- 10

Convert:
Get a tharacter
If not adigit char, go to Finish
Else

Strip the ASCII bias off of the
digit character (subtrad 30h)

Result <- Result * multiplier +
digit
go to Convert

Finish:

Convert:

GetNext:

Finish:

NotNeg:

mov bx, 0 ;bx contains running total
mov di, 10 ;di isthe multiplier
sub s, si 1si=0 means positive,

1Si=1 means negative

mov ah, 0lh ;read one character from keyboard

int 21h

cmp al, - ;wascharacter aminussign?

jre Convert ino, it was a digit

inc s ;yes, remember to negate at end

jmp GetNext 1go cet first digit

cmp al,'0" ;whenyoureal anon-digit, youre

jb Finish ;done

cmp a,'9

ja Finish

mov cl,a ;al will be used byMUL

mov ax, bx sput running total inax

mul di ;multiply AX by 10

sub cl, 30h ;convert single digit to binary

mov ch, 0

add a, X ;add new digit to runring total

mov bx, ax ;put runring total back in BX,
;because AX will be needed by next
sinput function

mov ah, 1 sprepare to read in next character

int 21h

jmp Convert

cmp s, 1 ;seeif you reed to negate number

jre NotNeg

neg bx ;yesyou do

nop ;check number with debugger

Binary-ASCII
Conversions

» To print anumber, it needs to
be mnverted from binary to
ASCII.

» For example:
— 361 da:i mal _> 13 3” , " 6” , " 1”

Algorithm (in Pseudo-
Code)

put number in AX

reped
divide AX by 10
convert remainder (DL) to ASCII
save remainder in abuffer

until AX =0

-> numbers are generated in *reverse order*

