
1

Lecture 16: Passing
Parameters on the Stack

• Quick Stack Review

• Passing Parameters on the Stack

• Binary/ASCII conversion

Push Examples

;assume SP =
0202

mov ax, 124h

push ax

push 0af8h

push 0eeeh
01FB
01FC
01FD
01FE
01FF
0200
0201

SS:SP

01
24
0A
F8
0E
EE

SS:00

Pop Examples

;initial SP = 01FC

pop BX

pop DX

BX = 0EEEh

DX = 0AF8

If we were to pop
again, the next
value popped
off would be
0124.

01FB
01FC
01FD
01FE
01FF
0200
020101

24
0A
F8
0E
EE

SS:SP

SS:00

CALL and RET

• CALL – pushes IP on the stack
(recall , IP holds the address of
the next instruction), puts the
address of the label (subroutine)
into IP.

• RET – pops the stack into IP to
return to the point at which the
subroutine was called.

2

Passing Parameters
using Registers

• We’ve been using registers to pass
parameters (when? for the INT 21h calls!)

• You can also use registers to pass a base
address of a group of memory locations.

• Example – our keyboard buffer:
maxlen db 20 ; max chars to input
actuallen db ? ;DOS will put the

number read here
inbuf db 20 dup (‘ ‘) ; where DOS

will put the data read in

– If you load the address of maxlen into a
register (using MOV BX offset maxlen)
before calling the subroutine then the
subroutine will be able to access the
other data members by using indirect
addressing.

Passing Parameters
Using Registers, cont.

• Advantages:
– Easy for passing a small number

of parameters

– Useful for passing the start
address of a block of parameters

• Problems:
– There are only four general

purpose registers (AX, BX, CX,
DX) and they are needed for
many things.

Passing Parameters
using the Stack

• For several parameters, it’ s
better to use the stack.

(this is what high level
languages do)

• Before the CALL, push the
parameters on the stack.

• But… you can’ t just pop them
off again in your program…
why?

Passing Parameters on
the Stack, cont.

• When you execute CALL, it
pushes IP on the stack.

• If your called routine executes a
pop it won’ t get a parameter, it
will get the return IP.

Note: stack drawn as 16-bit WORDS

param1

param2

IP SS:SP

push param1
push param2
call mysub

SS:00

3

Getting at Our
Parameters

• You can pop the IP off the stack
and then get your data.
– Don’ t do this!!! !

– If you forget to put IP back on
top, you will return off into never-
never land!

• A better solution – use the BP
register!
– BP works li ke BX except it holds

an offset from SS (recall BX
holds an offset from DS)

Indirect Addressing
Using BP

mov ax, [bx] ; this moves the
; word at DS:BX
; into AX

mov dx, [bp] ; this moves the
; word at SS:BP
; into DX

• you can also use indirect addressing
with displacement:
mov ax, [bp + 2] ;take the address

;in BP, add 2
;load AX with the
;contents of the word at
;that address.

Setting up a Stack Frame

• Parameters are passed on the
stack by setting up a stack
frame.
– The call ing routine pushes the

parameters on the stack.
– The CALL instruction is used to

call the subroutine.
– The subroutine pushes BP on the

stack (why?).

– The subroutine copies the value in
SP into BP so it can be used to
retrieve the variables.

Stack Frame Example

• After calli ng our subroutine:

Note: stack drawn as 16-bit WORDS

5

6

old IP SS:SP

push 5
push 6
call mysub

SS:00

[SP + 2]

[SP + 4]

old IP? The return address – this is the offset of
the instruction immediately after the call .

4

Stack Frame Example,
cont.

• Save and set up BP (in
procedure mysub):

Note: stack drawn as 16-bit WORDS

5

6

old IP

SP, BP mysub proc
push bp
mov bp, sp

SS

[BP + 4]

[BP + 6]

old BP

Retrieving Parameters

• Use indirect addressing with
displacement:

Note: stack drawn as 16-bit WORDS

5

6

old IP

SP, BP mov ax, [BP + 4]
; ax = 6
mov cx, [BP + 6]
; cx = 5

SS

[BP + 4]

[BP + 6]

old BP

TITLE Demonstrates parameter passing on the stack
;
; This program adds a constant value to each element of an array.
; It uses a procedure, and parameters are passed on the stack in
; the following order: the start address of the array, the constant
; value to be added, and the number of elements in the array.

.model small

.stack 100H

AddNumber EQU 12H ;number to be added
ArraySize EQU 9H

.data
TestArray DW 3AH, 4AH, 5AH, 6AH, 7AH, 1234H, 5678H

DW 9ABCH, 0DEFH

.code

.startup

mov ax, offset TestArray
push ax
mov ax, AddNumber
push ax
mov ax, ArraySize
push ax
call ArrayInc
nop
.exit

ArrayInc PROC NEAR

push bp
mov bp, sp ;set up frame for this call

push ax ;save registers destroyed by this
push bx ;procedure
push cx
push dx

mov cx, [bp+4] ;size of array
mov ax, [bp+6] ;the constant to be added
mov bx, [bp+8] ;start address of array

next: mov dx, [bx] ;get array element
add dx, ax ;add constant to it
mov [bx], dx ;store it back in array
add bx, 2 ;point to next array element
loop next

pop dx ;restore registers
pop cx
pop bx
pop ax

pop bp
ret ;returns

ArrayInc ENDP
end

5

What’s Wrong with this
Example?

Cleaning up the Stack

• What you should do is clean up the
stack using RET x, where x is the
number of bytes to add to SP after
the return:

RET 6 ;clean up the 6 bytes of

;parameters by adding

;6 to SP after popping IP

Using the Stack for
Local Variables

• Once you’ve set up your stack
frame, you can use it for local
variables as well:

Note: stack drawn as 16-bit WORDS

5

6

old IP

BP

push 7
push 8

mov bx, [BP –2]
;bx = 7
mov dx, [BP – 4]
;dx = 8[BP + 4]

[BP + 6]

old BP

7

8 SP, [BP – 4]

[BP – 2]

Pass By Reference vs.
Pass By Value

• The book talks about pass by value
and pass by reference.
– Pass by value – the value of the

parameter is passed into the subroutine
– Pass by reference – the address of the

parameter is passed into the subroutine
(we just saw this in the array example!)

• Either the registers or the stack can
be used to pass by value or by
reference.

• Why does it matter? Pass by
reference is used if you want the
procedure to modify a variable.

6

ASCII-Binary
Conversions

• In a high-level language, you just
read the number:
– read (num) or

– scanf(“%d”, &num),

– cin >> num, or…

• What’s going on behind the scenes?

• Say the user enters 361
– They enter 3 separate keys: “3” , “6” ,

“1”

– These come in as ASCII values

– They must be converted into the integer
361 and stored.

Algorithm (in Pseudo-
Code)

Result <- 0
Multiplier <- 10

Convert:
Get a character
If not a digit char, go to Finish
Else

Strip the ASCII bias off of the
digit character (subtract 30h)
Result <- Result * multiplier +
digit
go to Convert

Finish:

mov bx, 0 ;bx contains running total
mov di, 10 ;di is the multiplier
sub si, si ;si=0 means positive,

;si=1 means negative

mov ah, 01h ;read one character from keyboard
int 21h
cmp al, '-' ;was character a minus sign?
jne Convert ;no, it was a digit
inc si ;yes, remember to negate at end
jmp GetNext ;go get f irst digit

Convert:
cmp al, '0' ;when you read a non-digit, you're
jb Finish ;done
cmp al, '9'
ja Finish

mov cl, al ;al will be used by MUL
mov ax, bx ;put running total in ax
mul di ;multiply AX by 10

sub cl, 30h ;convert single digit to binary
mov ch, 0
add ax, cx ;add new digit to running total

mov bx, ax ;put running total back in BX,
;because AX will be needed by next
;input function

GetNext:
mov ah, 1 ;prepare to read in next character
int 21h
jmp Convert

Finish:
cmp si, 1 ;see if you need to negate number
jne NotNeg
neg bx ;yes you do

NotNeg:
nop ;check number with debugger

Binary-ASCII
Conversions

• To print a number, it needs to
be converted from binary to
ASCII.

• For example:
– 361 decimal -> “3” , “6” , “1”

7

Algorithm (in Pseudo-
Code)

put number in AX

repeat

divide AX by 10

convert remainder (DL) to ASCII

save remainder in a buffer

until AX = 0

-> numbers are generated in *reverse order*

