Ledure 14: The Stadk

e What isit?
 What isit used for?

The Stadk

A spedal memory buffer (outside
the CPU) used as atemporary
holding areafor addresses and data
The stadk isin the stadk segment.
The stad is a buffer of words.

SP holds the address(off set from

SS) of the last data element to be
added to the stack. -> the TOP of the

The Stadk
(SS— 5000

501FB 01FB
502FC 01FC
501FD 01FD
501FE 01FE
501FF 01FF
50200 %A 0200 <« (SP)
50201 1A 0201

SS 5000

P

stack.
* Thestak isaLIFO structure (last-
in, first-out)
Adding Elements
» Elements are alded by pushing them
onto the stac.
mov ax, 0AFh
push ax
(S9— 5000
501FB 01FB
502FC 01FC
501FD 01FD
501FE | AF 01FE < (SP
501FF 00 O1FF
50200 9A 0200
50201 1A 0201

Adding elements, cont.

* When datais pushed,
—-SP=SP-1
— high order databyte is gored in
SSSP
—-SP=SP-1
— low order data byte is gored in
SSSP
» SPisleft painting to theitem
just pushed (the “top” of the
stak)

Removing (Retrieving)

Information
» Elements are removed by
popping them from the stack.
— popbx
(89— 5000

501FB 01FB
502FC 01FC
501FD 01FD
501FE | AF 01FE
500FF | 0o 01FF
50200 | oA 0200« (SP
50201 | 1A 0201
BX

Retrieving, cont.

* When datais popped:

— copy SSSPinto low-order byte of the
register/memory locaion

— increment SP

— copy SSSPinto high-order byte of the
register/memory locdion

— increment SP

e SPispoainting to the new top o
stack.

* Notice: the data does not get deleted
from the memory locationit wasin,
but it will be overwritten the next
time datais pushed on to the stack.

A Word o Warning!

* The bodk draws the stack going
from high memory to low
memory:

— picture from Irvine

Warning, cort.

Why draw it that way?

Well, the stadk grows down, from
high memory to low memory urtil
SP=SS.

If it’sdrawn like the book hasiit,
then “down” is actualy down.

If it’sdrawn like I’ ve done it, it
looks more like the other drawings
of memory we've seen in this class
Plustheitem at the top of the stack
lookslikeit'sontop.

* You redal to be avare of what is
happening to SP when items are
being pushed and popped.

» Remember that memory can be
drawn differently but the assembly
codeis dill doing the same thing!

» SPalways pointsto the “top” (the
item that would be popped first).

* It'simportant when drawing the
stadk to be sure write the off set or
addressnext to it so you can tell
what isgoing on.

Push

PUSH deaements SP and copies a
16 [t or 32 bit register or memory
operand onto the stack at the
location pointed to by SP.
Allowed forms:

— pushreg

— push memval

— push immed

Examples:

— push AX

— push count ;where count dw ?

— push 0a23h

You can't push abyte on to the
stack!

Push Examples
;assume SP=
0202
mov ax, 124h
push ax .
push Caf8h .
push Oeesh
01FB
EE 0IFC+«—(SP
OE 01FD
F8 01FE
0A 01FF
24 0200
o1 0201

Pop

* POP copiesthe mntents of the stack
pointed to by SP into aregister or
variable and increments SP. Two
registers (CS and IP) canna be used
as operands.

¢ Allowed forms:

— popreg
— pop memval
e Examples:
— pop cx
— pop count ;where count dw ?

Pop Examples

;initial SP=01FD
pop BX
pop DX
BX = OEEEh :
DX = 0AF8 B
If wewereto pop 01FB
again, the next EE 01FC
value popped
off would be OE 01FD
0124. F8 01FE
0A 01FF
24 0200 «—(SP)
01 0201

More Instructions

* PUSHF — pushesthe flags
register onto the stack

» POPF —restores the flags
register from the stack

Common Stadk Uses

» A goodtemporary save areafor
registers.

» Subroutine return addresses are
saved onthe stack.

» Procedure arguments can be
passed onthe stack (high level
languages typicdly dothis).

» High level languages use the
stack as aplaceto store locd
variables.

Stadk Overflow

» The 8086 fardware does not
ched for stack overflow!

» The CPU will | et you keep
pushing beyond bound of the
stadk (possbly destroying
important memory).

 Your program must check by:

CMPSP, 0
If there is any chancethat stack
overflow might occur.

Saving and Restoring
Registers

» examplep 135 Irvine

Procedures

» Aswith high-level languages, it
isuseful to be eleto cdl
procedures from your assembly
program.

* You dd thisin hanework 3
with wrint.

 Someterms:

— function: a procedure that returns
avalue

— subroutine: a procedure (the terms
are interchangeabl e)

PROC and ENDP

* PROC identifiesthe start of a
procedure

* ENDP identifiesthe end
* examplel, p. 136in Irvine

CALL and RET

* CALL —pushesIP onthe stadk
(recall, IP holds the addressof
the next instruction), puts the
addressof the label (subroutine)
into IP.

* RET — popsthe stack into IP to
return to the point at which the
subroutine was cdl ed.

TITLE Procedure Calls
two cdlsto a procedure that increments every element

of an array

.model small

.stadk 10Ch

.data
List DW 5FFFh, OAh, 12h, 17h
Array DW -9,4,7,0,14,9

countl DW 4
count2 DW 6

.code

Startup

mov bx, offset List Jfirst cdl
mov cx, countl

cdl IncProc

mov bx, offset Array ;second cdl
mov CX, count2

cdl IncProc

nop ;can examine arays with
;the debugger here

exit

;return to DOS

;procedure to increment all the dementsin an array of
words

;BX contains the base aldressof the aray

;CX contains the number of elementsin the aray

IncProc proc

sub S, s ;start index at O
Lup: inc word ptr [bx] [s] ;useindexed
addressng

add s, 2

;deding with words, not bytes

loop Lup ;g0 to next element

ret

;return - must be used with Call
IncProc endp

end ;end of assembly

Nested Procedure Call s

» example 4 from text

Nea vs Far Cdlls

» When the cdler and subroutine
are in the same segment, the
CALL instruction generates
codefor aNEAR CALL.

» When the cdler and subroutine
arein dfferent segments, the
asembler generatesa FAR
CALL.

FAR CALL

* FARCALL

—saves both CS and IP onthe stack
(pushes CSfirst).

— loads the subroutine’'sCS and IP

— generates a different form of
return (RETF) that restores CS
and IP from the stack

Using FAR CALL

e UseFAR:
— when linking asm routines to HLL
programs (some require FAR cdls)

— when cdling certain library routines
that are set up for far calls

— when your program size exceeds 64K
(medium or large memory models). In
this case, therewill be multiple code
segments, requiring far calls.

¢ Mostly, youwill use NEAR. The
asembler asaimes youwant NEAR
unlessyoutell it otherwise.

¢ NEAR cdlswill exeaite faster (less
pushing and pgoping)

Far Cdll, cont.

» example, p. 140in Irvine

