
1

Lecture 14: The Stack

• What is it?

• What is it used for?

The Stack

• A special memory buffer (outside
the CPU) used as a temporary
holding area for addresses and data

• The stack is in the stack segment.

• The stack is a buffer of words.

• SP holds the address (offset from
SS) of the last data element to be
added to the stack. -> the TOP of the
stack.

• The stack is a LIFO structure (last-
in, first-out)

The Stack

501FB
502FC
501FD
501FE
501FF
50200
50201

01FB
01FC
01FD
01FE
01FF
0200
0201

5000(SS)

(SP)

1A
9A

5000SS

0200SP

Adding Elements

• Elements are added by pushing them
on to the stack.
mov ax, 0AFh

push ax

501FB
502FC
501FD
501FE
501FF
50200
50201

01FB
01FC
01FD
01FE
01FF
0200
0201

5000(SS)

(SP)

1A
9A
00
AF

2

Adding elements, cont.

• When data is pushed,
– SP = SP – 1

– high order data byte is stored in
SS:SP

– SP = SP – 1

– low order data byte is stored in
SS:SP

• SP is left pointing to the item
just pushed (the “ top” of the
stack)

Removing (Retrieving)
Information

• Elements are removed by
popping them from the stack.
– pop bx

501FB
502FC
501FD
501FE
501FF
50200
50201

01FB
01FC
01FD
01FE
01FF
0200
0201

5000(SS)

(SP)

1A
9A
00
AF

00AFBX

Retrieving, cont.

• When data is popped:
– copy SS:SP into low-order byte of the

register/memory location
– increment SP
– copy SS:SP into high-order byte of the

register/memory location
– increment SP

• SP is pointing to the new top of
stack.

• Notice: the data does not get deleted
from the memory location it was in,
but it will be overwritten the next
time data is pushed on to the stack.

A Word of Warning!

• The book draws the stack going
from high memory to low
memory:

– picture from Irvine

3

Warning, cont.

• Why draw it that way?

• Well , the stack grows down, from
high memory to low memory until
SP = SS.

• If it’ s drawn like the book has it,
then “down” is actually down.

• If it’ s drawn like I’ ve done it, it
looks more li ke the other drawings
of memory we’ve seen in this class.
Plus the item at the top of the stack
looks li ke it’ s on top.

So…

• You need to be aware of what is
happening to SP when items are
being pushed and popped.

• Remember that memory can be
drawn differently but the assembly
code is still doing the same thing!

• SP always points to the “top” (the
item that would be popped first).

• It’ s important when drawing the
stack to be sure write the offset or
address next to it so you can tell
what is going on.

Push

• PUSH decrements SP and copies a
16 bit or 32 bit register or memory
operand onto the stack at the
location pointed to by SP.

• Allowed forms:
– push reg
– push memval
– push immed

• Examples:
– push AX
– push count ;where count dw ?
– push 0a23h

• You can’ t push a byte on to the
stack!

Push Examples

;assume SP =
0202

mov ax, 124h

push ax

push 0af8h

push 0eeeh
01FB
01FC
01FD
01FE
01FF
0200
0201

(SP)

01
24
0A
F8
0E
EE

4

Pop

• POP copies the contents of the stack
pointed to by SP into a register or
variable and increments SP. Two
registers (CS and IP) cannot be used
as operands.

• Allowed forms:
– pop reg

– pop memval

• Examples:
– pop cx

– pop count ;where count dw ?

Pop Examples

;initial SP = 01FD

pop BX

pop DX

BX = 0EEEh

DX = 0AF8

If we were to pop
again, the next
value popped
off would be
0124.

01FB
01FC
01FD
01FE
01FF
0200
0201

(SP)

01
24
0A
F8
0E
EE

More Instructions

• PUSHF – pushes the flags
register on to the stack

• POPF – restores the flags
register from the stack

Common Stack Uses

• A good temporary save area for
registers.

• Subroutine return addresses are
saved on the stack.

• Procedure arguments can be
passed on the stack (high level
languages typically do this).

• High level languages use the
stack as a place to store local
variables.

5

Stack Overflow

• The 8086 hardware does not
check for stack overflow!

• The CPU will l et you keep
pushing beyond bounds of the
stack (possibly destroying
important memory).

• Your program must check by:
CMP SP, 0

If there is any chance that stack
overflow might occur.

Saving and Restoring
Registers

• example p 135, Irvine

Procedures

• As with high-level languages, it
is useful to be able to call
procedures from your assembly
program.

• You did this in homework 3
with wrint.

• Some terms:
– function: a procedure that returns

a value
– subroutine: a procedure (the terms

are interchangeable)

PROC and ENDP

• PROC identifies the start of a
procedure

• ENDP identifies the end

• example 1, p. 136 in Irvine

6

CALL and RET

• CALL – pushes IP on the stack
(recall , IP holds the address of
the next instruction), puts the
address of the label (subroutine)
into IP.

• RET – pops the stack into IP to
return to the point at which the
subroutine was called.

TITLE Procedure Calls
; two calls to a procedure that increments every element
; of an array

.model small

.stack 100h

.data
List DW 5FFFh, 0Ah, 12h, 17h
Array DW -9, 4, 7, 0, 14, 9
count1 DW 4
count2 DW 6

.code

.startup
mov bx, offset List ;first call
mov cx, count1
call IncProc

mov bx, offset Array ;second call
mov cx, count2
call IncProc

nop ;can examine arrays with
;the debugger here

.exit
;return to DOS

;procedure to increment all the elements in an array of
words

;BX contains the base address of the array

;CX contains the number of elements in the array

IncProc proc

sub si, si ;start index at 0

Lup: inc word ptr [bx] [si] ;use indexed
addressing

add si, 2
;dealing with words, not bytes

loop Lup ;go to next element

ret
;return - must be used with Call

IncProc endp

end ;end of assembly

Nested Procedure Calls

• example 4 from text

7

Near vs Far Calls

• When the caller and subroutine
are in the same segment, the
CALL instruction generates
code for a NEAR CALL.

• When the caller and subroutine
are in different segments, the
assembler generates a FAR
CALL.

FAR CALL

• FAR CALL
– saves both CS and IP on the stack

(pushes CS first).

– loads the subroutine’s CS and IP

– generates a different form of
return (RETF) that restores CS
and IP from the stack

Using FAR CALL

• Use FAR:
– when linking asm routines to HLL

programs (some require FAR calls)

– when calling certain library routines
that are set up for far calls

– when your program size exceeds 64K
(medium or large memory models). In
this case, there will be multiple code
segments, requiring far calls.

• Mostly, you will use NEAR. The
assembler assumes you want NEAR
unless you tell it otherwise.

• NEAR calls will execute faster (less
pushing and popping)

Far Call , cont.

• example, p. 140 in Irvine

