
1

Lecture 13: I/O

• Interrupts

• MS-DOS Function Calls
– Input,Output, File I/O

• Video

• Keyboard

I/O

• Getting data into your program:
– define it in the data area
– use immediate operands

• Very limiting…
• Most programs require input

from an external source:
keyboard, disk, mouse, or
modem.

• Most programs need to provide
output in a useable fashion:
screen, printer, or disk.

How?

• Using the INT (Interrupt)
instruction:
– INT 21h -> DOS function calls

– INT 10h -> BIOS level video
control

– INT 16h -> BIOS level keyboard
input

(BIOS? Basic Input Output System
– special programs built into the
computer that handle basic I/O)

Interrupts

• What’s an interrupt?
– processing of one program is

interrupted to respond to an event
or take some action

• Two types we’ ll talk about:
– Hardware

– Software

2

Hardware Interrupts

• A hardware interrupt is a signal
generated by part of the system
hardware that needs immediate
attention from the CPU.

• An example of this is hitting a key
on the keyboard. The CPU will
suspend the current program and
execute a BIOS level routine.

• This is needed because if the
keyboard character is not saved by
the CPU then it will be lost.

• Sometimes programs have to disable
interrupts. This is done using the
CLI (clear interrupt flag) and STI
(set interrupt flag) instructions.

Software Interrupts

• Not really interrupts but have
some similarities.

• INT instruction requests
services from the operating
system (in other words: INT
calls an OS subroutine)

• The value in AH tells which
subroutine to call .

• Also, other registers may need
to hold data needed by the
subroutine.

How does it work?

• The CPU processes an interrupt
instruction using the interrupt
vector table: a table of addresses in
the lowest 1,024 bytes of memory.

• Each entry in the table points to an
operating system subroutine.

• Steps taken:
1. Use the number after the INT (such

as 21h or 10h) to find the entry in the
interrupt vector table.

2. Jump to the address stored at that
location in the interrupt vector table.

3. Execute the DOS subroutine at that
location.

4. Return to the calli ng program (using
the IRET instruction)

Common Software
Interrupts

• INT 10h – video services

• INT 16h – keyboard services

• INT 17h – printer services

• INT 1Ah – time of day

• INT 1Ch – user timer interrupt

• INT 21h – DOS services

3

MS-DOS Function Calls

• INT 21h

• 90 or so different functions!

• We’ ll l ook at:
– Output

– Input

– File I/O

But first…

• Remember ASCII?

• When you do I/O using INT 21h you
are working with ASCII characters.

• For example, ‘A’ = 41h

• This ALSO holds true if you are
reading in or displaying numbers!

• If you want to display 123, you have
to tell DOS to display 31 (the ASCII
code for ‘1’), then 32, then 33

• If you are reading in a number, you
will need to convert it from a string
of ASCII characters (such as “123”)
into a number (stored internally as
binary).

Output
• We’ve seen 09h (String Output)

– example, p. 148

• 02h: Character Output
– sends a character to standard

output (your screen) and advances
the cursor.

– Input: AH = 2, DL = the character
you want to print

– Output: AL is modified

Character Output
Example

• From write procedure in
Homework 3:

;Display the buffer, using CX as a counter.

A2: mov ah, 2 ;function: display
;character

movdl, [di] ;get digit from buffer

int 21h ;call DOS

inc di ;point to next digit

loopA2

4

Input

• A bewildering array of DOS
input functions:
– 01h – filtered input with echo
– 06h – direct input without waiting
– 07h – direct input, no control-

break
– 08h – direct input with control-

break
– 0ah – buffered input
– 0bh – get input status
– 0ch – clear input buffer, invoke

input function
– 3fh – read from file or device

A few terms

• Keyboard typeahead buffer – a 15
character circular buffer that stores
keystrokes as you type (lets you type
faster than DOS can respond without
losing data)

• Input characteristics:
– waits for keystroke – does the function

wait for you to type or assume the
character is in the buffer?

– echos – does it display the character it
reads?

– cntrl-break – can you terminate it using
control break?

– fil tered input – does it filter out control
characters (such as enter, tab,
backspace)

Some Input Functions

• 01h – filtered input with echo
– waits for a single character to be

entered (or, if one is in the input buffer
already just grabs it)

– stores it in AL
– Input: ah = 1
– Output: al = the character read
(fil tered? fil ters out control characters)
(echo? it displays the character you as you

type it. If you weren’ t using echo you
would not be able to see what you
typed!)

example, p. 150

Buffered Input
• 0Ah reads a character string of

up to 255 characters from
standard input (your DOS
window) and stores it in a
buffer.
– Backspace key can be used to

erase characters and back up the
cursor

– Enter key terminates input

– Non-ASCII keys are filtered out

– Input: ah = 0ah, DX contains
offset of record containing the
keyboard parameters.

5

Keyboard Parameters?

• You (the programmer) need to define the
data area where you tell the DOS function
how many characters you want to input
(maximum), and where it should put them:

.data

maxlen db 20 ; max chars to input

actuallen db ? ;DOS will put the
number read here

inbuf db 20 dup (‘ ‘) ; where DOS
will put the data read in

chars in buffer (not counting enter)

input buffer area (last char will be enter
- 0Dh)

max characters your program will allow
(<= 255) – includes enter!

Example

• example on p. 152, Irvine

File Processing

• DOS sees no distinction between
disk files and devices (keyboard,
display, etc.)

• A handle is a 16-bit number DOS
uses to identify an open file or
device.

• Standard handles that are pre-
defined (that you don’ t have to
open):
0 – keyboard
1 – console
4 – printer

• For all functions, if an error occurs
then the carry flag is set and an error
code is returned in AX.

Basic File Functions

• table 1, p. 439 in Irvine

6

Using Files

• 3Ch – creating a file.
– Creates a new file or truncates an

existing file to 0 bytes.
– Automatically opens file for

reading and writing
– Input:

• AH = 3Ch
• DS:DX points to an ASCIIZ string

with the name of the file (ASCIIZ?
null terminated).

• CX contains an attribute value: 00
normal file, 01 read only, 02 hidden,
04 system.

– Output:
• File Handle returned in AX

File Create Example

.data

newfile db “NEWFILE.DOC”, 0

handle dw ?

movdx, offset newfile ;name offset

movah, 3ch ;create file

mov cx, 0 ;normal file

int 21h ;DOS call

jc display_error ;jump if error

movhandle, ax ;save handle

This could be
dangerous!

• Why? it does not prevent you
from writing over an existing
file.
– You can check if the file exists

(by trying to open it) or

– You can use function 5Bh (create
new file instead)

File Error Codes

• When the carry flag is set, you have
an error.

• AX will have the error code:
– 03 – path not found. The file specifier

(pointed to by DX) probably has a non-
existant directory name

– 04 – too many open files. The max
number of open files defaults to 8. The
first five are used by DOS (standard file
handles), that leaves you only three.
You can change this by editing your
CONFIG.SYS file to add the files
command (such as files=32)

– 05 – access denied. The fil e exists, and
is read only, or the file name matches a
subdirectory name, or you’ re adding a
new entry into a full root directory.

7

Opening a File

• 3dh – opens an existing file in
input (read only), output (write
only), or input-output mode.
– Input:

• AH = 3dh

• AL – contains the file mode
input = 0

output = 1

input-output = 2

• DX contains the offset of the
filename

– Output: file handle in AX

Example

• p. 450 in Irvine

• Error codes returned in AX:
1 invalid function (trying to share file)
2 file not found
3 path not found
4 too many files
5 access denied

Closing a File

• 3Eh – closes a file.
– Flushes the DOS internal file

buffer by writing any remaining
data to disk

– Makes the file handle available to
other programs (important since
number of f iles is limited!)

– Input:
• AH = 3eh
• BX – contains the fil e handle

– Output:
• Only if there’s an error. The only

error is 6 – invalid handle (fil e
handle does not refer to an open file)

Example

• p. 451, Irvine

8

Read from File or
Device

• 3Fh – read from file or device
– reads from a fil e or another device

(such as the keyboard if your handle is
zero!)

– If you’ re using it for keyboard input, it
will terminate when you type enter, the
CR,LF will be stored and included in
the count of characters.

– Input:
• AH = 3F
• BX – file handle (0 for keyboard)
• CX – number of bytes to read
• DX – pointer to the buffer area

– Output:
• AX – number of bytes read

– The number of bytes read is useful
because you can use it to check for end
of file!

Example

• p. 452, Irvine

Write to a File or Device

• 40h – write to a file or device
– writes to a file or other device (such as

the terminal if the handle is 1)
– Input:

• AH = 40h
• BX – file handle (1 for terminal)
• CX – number of bytes to write
• DX – pointer to the buffer area

– Output:
• AX – number of bytes written

– If the number of bytes written (AX) is
less than the number of bytes to write
(CX) then the disk might be full !

– Possible error codes are 5 – access
denied and 6 – invalid handle

Example

• p. 452, Irvine

9

Recap

• These were a few of the INT
21h functions.

• We talked about functions for:
– output (strings and single chars)

– input (single char and buffered)

– file I/O (create, open, close, read,
write)

• Your text describes many more!

BIOS Operations

• The INT 21h functions can
handle much of your I/O

• There are also lower-level BIOS
operations (which the
procedures called by INT 21h
will use) that handle more
complex operations.

• Some that are described in
Irvine:
– INT 10h – BIOS video operation
– INT 16h – Keyboard operation

Video Systems

Video
Signal

Generator

Video
Controller

Mode
Control

Monitor

Character
Generator

Attribute
Decoder

Video
Display

Area

data from program

data
bits

characters

attributes

horizontal and vertical timing

timing
addressing

Components of a Video
System

• Basic components:
– Monitor – what displays the data. The

screen consists of a group of closely
spaced horizontal li nes -> the raster.
Each line is made of hundreds of pixels
(points)

– Video Display Area – this is where a
program transfers data for display. It
can be in characters (for text mode –
what we’ve been using) or in pixels (for
graphics mode). Data is stored in pages
where one page is displayed at a time.

– Video Controller – generates horizontal
and vertical timing signals. It
synchronizes delivery of data with these
signals. It also handles size and location
of the cursor and selecting the page to
be displayed.

10

More components

• ASCII generator – converts ASCII
codes from the video display area
into dot patterns that make up the
characters.

• Attribute decoder – translates the
attribute byte from the video display
area into signals to give the
characters characteristics
(background and foreground color,
intensity, blinking…)

• Mode control – the video mode
determines things li ke text vs.
graphics, color or monochrome, etc.

Video Attributes

• If you’ re using the color text
mode (ASCII , not graphics) you
can display text in colors with
blinking and reverse video.

• Video attribute:
– picture and example from p. 159.

INT 10h (BIOS Video
Operation) Functions

• table from p. 163, Irvine

Keyboard Operations

• We’ve already mentioned the
keyboard buffer (when talking about
buffered I/O).

• When you press a key, the keyboards
processor generates the scan code
for the key and requests BIOS INT
09H.
– scan code? yet another character

encoding. This is NOT the same as
ASCII!

• INT 09h gets the scan code, converts
it to ASCII , and delivers it to the
keyboard buffer ara.

11

INT 16h (Keyboard
Operation) Functions

• table from p. 156, Irvine.

