Ledure 12: Addressng
Modes (Part 2)

Review of Indired Addressng
Based and Indexed Operands
Base-Index Operands

» Base-Index with Displacement

Indirea Addressng

* Anindired operandis aregister
that contains the off set of data
in memory.

* When the offset of the variable
isplacal in aregister, the
register becomes a pointer to the

label.

* Youcan use Sl, DI, BX, and BP
to hdd indired operands.

— BX: base register

— S, DI: index registers
— BP: base pointer (contains an
off set from the SSregister)

AX DS

oot

BX

0042:0100 | EEEE

Compare:

MOV AX,BX ;AX =0100

MOV AX,[BX] ; AX = EEEE

The[] aroundBX indicaesthat BX contains
the addressof the data you want.

Useful because we can change the value of BX
at execution timeto be aleto pick up datafrom
different places.

TITLE Largest and Smallest Signed Numbers

-1, 2000, -4000, 32767, 500, 0

.model small
.stadk 10Ch
.data
array dw
largest dw ?
smallest dw ?
.code
main proc
mov AX, @data
mov DS, AX
mov di, offset array
mov ax, [di]
mov largest, ax
mov smallest, ax
mov cx, 6
Al mov ax, [di]
cmp ax, smallest
jge A2
mov smallest, ax
A2: cmp ax, largest
jle A3
mov largest, ax
A3: add di, 2
loop Al
mov AX, 4C00h
int 21h
done nop
main endp
end main

end

; get first element

; initialize largest

; initi alize small est

; loop counter

; get array value

; [DI] >= small est?

; yes: skip

; no: move [DI] to smallest
; [DI] <=largest?

; yes: skip

; no: move [DI] to largest
; point to next number

; reped loop urtil CX =0

Based and Indexed
Operands

» Based operands and indexed
operands are the same: A
register, either base or index) is
added to a displacement to
generate an effedive address

» Thedisplacement is a constant.

» BX and BP are base registers
(used as based operands) and S|
and DI areindex registers (used
asindexed operands).

Forms Allowed

.data
ROWVAL =3
array dw 123 549, 3403, 235

Register Added to an Register Added toa
Offset Constant

mov dx, array[bx] mov ax, [bx+ROWVAL]
mov dx, [di + array] mov dx, [bp+4]

mov dx, [array+si] mov dx, 2[si]

Example

 array example, p. 110in Irvine

Base-Index Operands

* A base-index operand adds the
value of abase register to an
index register to get amemory
off set.

» Oneimportant restriction: you
can na combine two base
registers (i.e. BP with BX) or
two index registers (Sl with DI)

* Why isthisuseful ?

— Youcan set your displacement at
exeaution time by storing the base

addressin oreregister (BX) and
your off set in another (Sl or DI).

Example: Two
Dimensional Array

10 |20 (30 |40 |50
1050

60 |70 |80 |90 |0a0
1055

Ob0 |OcO |0dO |0e0 |0f0

e picturefrom p.111, Irvine

2D Array, continued

» Example 7, p. 1111Irvine

Base-Index with
Displacement

Example: Two
Dimensional Array

* Youcan also crede an operands
eff ective aldress by combining
abase register, an index,
register and a displacement.

* Someformats are:

mov dx, array[bx][§]
mov ax, [bx+si+array]
add d, [bx+si+3]
sub cx, array[bptsi]

1050

1055

10 |20 |30 |40 |50

60 |70 |80 (90 |0a0

ObO [OcO |0dO |0e0 |0Of0

array is at off set 1050
if bx =5 (pointing to second row)
and s = 2 (third column)

array[bx][si] will get the value &
offset 0157-> 80

Two Dimensional Array,
cornt.

o Examplefromp. 112 Irvine

Be caeful with arrays!

1050 |10 20 [30 |40 |50

1055 |60 |70 (80 |90 |0a0

0b0|0cO |0d0|0e0 |0f0

* if youwant the third column, second
row, it istempting to try to accessit
likethis:

array[bX][s] ; wherebx =1for the
second row, si = 2 for the third column

(like aray[1][2] in C)

* thiswill not work! Thiswill adually
point to 4Q not to 80
1050 +1+2=1053

Accessng arrays

1050 |10 |20 |30 [40 |50

1055 60 |70 |80 |90 |0a0

0b0|0c0 |0dO|0e0 | 0f0

¢ toaccessrow r, column ¢, you need
to set your registers asfoll ows:
— row register = (r — 1) * rowlength
— column register = (c—1)
— so, for row 2, col 3
* row register =5
¢ column register = 2
+ 1050+ 5+ 2= 1057 -> 80!
¢ Note: thisasauimesthat you store
your array by rows!

How does this affed
machine mde?

* r/m and mod ckfinitions from
Intel shed

Addressng Modes
We' ve Looked At

¢ mod = 11 (Register to Register)

* mod =00 r/mfield tells you
01 } how to calculate
10 the address

¢ Indired addressng:

Uses BX, S, DI astheregister to hold
the address

This uses mod 00(displacement = 0)
r/mfield = 100[SI]

101[DI]

111[BX]

Other Posshbiliti es (not
courting BP)

» User/mfield abowve (indicating
register: 100, 101, 111) but
alow anonzero dsplacment
(mod=01 a 10)

* Or,

r/m = 000 [BX][SI] (+displ)
r/m = 001 [BX][DI] (+displ)

