
1

Lecture 12: Addressing
Modes (Part 2)

• Review of Indirect Addressing

• Based and Indexed Operands

• Base-Index Operands

• Base-Index with Displacement

Indirect Addressing

• An indirect operand is a register
that contains the offset of data
in memory.

• When the offset of the variable
is placed in a register, the
register becomes a pointer to the
label.

• You can use SI, DI, BX, and BP
to hold indirect operands.
– BX: base register
– SI, DI: index registers
– BP: base pointer (contains an

offset from the SS register)

FFFF

0100

0042

AX DS

BX

EEEE0042:0100

Compare:

MOV AX, BX ;AX = 0100
MOV AX, [BX] ; AX = EEEE

The [] around BX indicates that BX contains
the address of the data you want.

Useful because we can change the value of BX
at execution time to be able to pick up data from
different places.

TITLE Largest and Smallest Signed Numbers

.model small

.stack 100h

.data
array dw -1, 2000, -4000, 32767, 500, 0
largest dw ?
smallest dw ?

.code
main proc

mov AX, @data
mov DS, AX
mov di, offset array
mov ax, [di] ; get first element
mov largest, ax ; initialize largest
mov smallest, ax ; initialize smallest
mov cx, 6 ; loop counter

A1: mov ax, [di] ; get array value
cmp ax, smallest ; [DI] >= smallest?
jge A2 ; yes: skip
mov smallest, ax ; no: move [DI] to smallest

A2: cmp ax, largest ; [DI] <= largest?
jle A3 ; yes: skip
mov largest, ax ; no: move [DI] to largest

A3: add di, 2 ; point to next number
loop A1 ; repeat loop until CX = 0
mov AX, 4C00h
int 21h

done: nop
main endp
end main
end

2

Based and Indexed
Operands

• Based operands and indexed
operands are the same: A
register, either base or index) is
added to a displacement to
generate an effective address.

• The displacement is a constant.

• BX and BP are base registers
(used as based operands) and SI
and DI are index registers (used
as indexed operands).

Forms Allowed

.data

ROWVAL = 3

array dw 123, 549, 3403, 235

mov dx, 2[si]mov dx, [array+si]

mov dx, [bp+4]mov dx, [di + array]

mov ax, [bx+ROWVAL]mov dx, array[bx]

Register Added to a
Constant

Register Added to an
Offset

Example

• array example, p. 110 in Irvine

Base-Index Operands

• A base-index operand adds the
value of a base register to an
index register to get a memory
offset.

• One important restriction: you
can not combine two base
registers (i.e. BP with BX) or
two index registers (SI with DI)

• Why is this useful?
– You can set your displacement at

execution time by storing the base
address in one register (BX) and
your offset in another (SI or DI).

3

Example: Two
Dimensional Array

• picture from p.111, Irvine

0f00e00d00c00b0

0a090807060

5040302010
1050

1055

2D Array, continued

• Example 7, p. 111 Irvine

Base-Index with
Displacement

• You can also create an operands
effective address by combining
a base register, an index,
register and a displacement.

• Some formats are:
mov dx, array[bx][si]

mov ax, [bx+si+array]

add dl, [bx+si+3]

sub cx, array[bp+si]

Example: Two
Dimensional Array

• array is at offset 1050
• if bx = 5 (pointing to second row)

and si = 2 (third column)
• array[bx][si] will get the value at

offset 0157 -> 80

0f00e00d00c00b0

0a090807060

5040302010
1050

1055

4

Two Dimensional Array,
cont.

• Example from p. 112, Irvine

Be careful with arrays!

• if you want the third column, second
row, it is tempting to try to access it
li ke this:
array[bx][si] ; where bx = 1 for the

second row, si = 2 for the third column
(like array[1][2] in C)

• this will not work! This will actually
point to 40, not to 80
1050 +1 + 2 = 1053

0f00e00d00c00b0

0a090807060

50403020101050

1055

Accessing arrays

• to access row r, column c, you need
to set your registers as follows:
– row register = (r – 1) * rowlength

– column register = (c – 1)

– so, for row 2, col 3
• row register = 5

• column register = 2

• 1050 + 5 + 2 = 1057 -> 80!

• Note: this assumes that you store
your array by rows!

0f00e00d00c00b0

0a090807060

50403020101050

1055

How does this affect
machine code?

• r/m and mod definitions from
Intel sheet

5

Addressing Modes
We’ve Looked At

• mod = 11 (Register to Register)
• mod = 00 r/m field tells you

01 how to calculate

10 the address

• Indirect addressing:
Uses BX, SI, DI as the register to hold

the address.
This uses mod 00 (displacement = 0)
r/m field = 100 [SI]

101 [DI]
111 [BX]

Other Possibiliti es (not
counting BP)

• Use r/m field above (indicating
register: 100, 101, 111) but
allow a non-zero displacement
(mod = 01 or 10)

• Or,
r/m = 000 [BX][SI] (+displ)

r/m = 001 [BX][DI] (+displ)

