
1

Lecture 11: Addressing
Modes (Part 1)

• Operand Types (a review)

• Addressing Modes

• WORD and BYTE PTR

Basic Operand Types

• Three basic types:
• immediate – a constant

• register – a CPU register

• memory – a reference to a
location in memory

Immediate Operands

• An immediate operand is a
constant expression such as a
number, a character, or an
arithmetic expression.
mov al, 10 ; al = 10
mov bl, ‘A’ ; bl = ‘A’
mov cx, ‘AB’ ; cx = ‘AB’
mov dx, 123h ; dx = 123h

• The assembler calculates the
value of the immediate operand
and inserts it directly into the
machine instruction.

Register Operands

• As we’ve seen, register
operands are eight or sixteen bit
registers (or 32 if using the
extended registers).
mov ax, bx
mov al, bl

• Register addressing is very
eff icient because no memory
access is required.

2

Memory Operands

• For memory operands, there are
a number of different ways that
they can be accessed using
assembly language.

• These different ways are
addressing modes.

Assembly Language
Addressing Modes

• Memory is accessed by calculating
its effective address, using the
distance (or offset) of the data from
the beginning of a segment (usually
the data segment).

• Memory Addressing modes:
Direct
Register Indirect
Based or Indexed
Base-indexed
Base-indexed with displacement
(displacement is a number or offset from a
variable)

Direct Operands

• A direct operand refers to the
contents of memory at a
location identified by a label in
the data segment.

• We’ve seen many examples of
this already. Here are a few
more:
– Irvine, p. 78

OFFSET Operator

The offset operator is used to move
the offset of a label into a
register or variable.

0200h
anum db 12

.

.
mov bx, offset anum

-- assembles as:
mov bx, 0200h

Why is this useful?
In homework 2 we saw how
storing an address in BX could
be used to step through a li st of
numbers.

12

anum

3

Another way to get the
address

• LEA BX, anum

• LEA stands for load effective
address

• There is a difference between LEA
and MOV … OFFSET:
– LEA calculates the label’ s offset at

runtime

– MOV … OFFSET moves an immediate
value that is known at assembly time

• Use LEA if the effective address of
an operand must be calculated at
runtime.

Direct-Offset Operands

• You can use the addition and
subtraction operators to access a
list of values.
– The + operator adds to the offset

of a variable.

– The minus operator subtracts
from the labels offset.

Addition Example

• Irvine, p. 79

Subtraction Example

• p. 76 in Irvine

• Where have we seen this type of
addressing before?

4

Lecture 7 Example of
Direct Offset Addressing

• Example:
arra yB db 10h, 20h

arra yW dw 100h, 200h

….

mov al, arr ayB ;AL = 10h

mov al, arr ayB+1 ;AL = 20h

mov ax, arr ayW ;AX = 100h

mov ax, arr ayW+2 ;AX = 200h

mov ax, arr ayW+1 ;AX = ?

Indirect Addressing

• An indirect operand is a register
that contains the offset of data
in memory.

• When the offset of the variable
is placed in a register, the
register becomes a pointer to the
label.

• You can use SI, DI, BX, and BP
to hold indirect operands.
– BX: base register
– SI, DI: index registers
– BP: base pointer (contains an

offset from the SS register)

FFFF

0100

0042

AX DS

BX

EEEE0042:0100

Compare:

MOV AX, BX ;AX = 0100
MOV AX, [BX] ; AX = EEEE

So why do we have to use indirect addressing?
We could just put a label at location 0042:0100
and do a

MOV AX, label

CPU Memory
;increment each word in an array list

.data

LIST DW 5FFFh, 0Ah, 12h, 17h, 4h

.code

.startup

;step through each element and increment

MOV AX, LIST

INCAX

MOV LIST, AX

MOV AX, LIST+2

INCAX

MOV LIST+2, AX

etc… for list+4, list+6, list+8

• This could get pretty long! You need a
way to modify the address at execution
time so you can put the above code in a
loop.

5

• If you put the address of the
base of the list in BX, you can
use indirect addressing and a
loop!

;increment each word in an array list

.data

LIST DW 5FFFh, 0Ah, 12h, 17h, 4h

.code

.startup

MOV BX, offset LIST

MOV CX, 5 ;5 elements

LUP: MOV AX, [BX] ; get item pointed to by BX

INC AX ;add one to it

MOV [BX], AX ;put back into same place

ADD BX, 2 ;increment address by 2

LOOP LUP ;loop back to top

• Quite an improvement!

An even shorter way!
;increment each word in an array list

.data
LIST DW 5FFFh, 0Ah, 12h, 17h, 4h

.code

.startup
LEA BX, LIST
MOV CX, 5

LUP: INC WORD PTR [BX] ;*
ADD BX, 2
LOOP LUP

• * You can’ t just say INC [BX]
because there is nothing in the
instruction to indicate if BX has the
address of a word (li ke in this
example) or a byte.

• You can specify which one it is
using WORD PTR or BYTE PTR

More on WORD and
BYTE PTR

;increment each word in an array list
.data

LIST DW 5FFFh, 0Ah, 12h, 17h, 4h
.code
.startup

LEA BX, LIST
MOV CX, 5

LUP: INC WORD PTR [BX] ; List’s 1st entry
;after INC would
;be 6000h

vs.
….
LUP: INC BYTE PTR [BX] ;Lists 1st entry

;after INC would
;be 5F00h

only the low byte (FF) was incremented. It
wrapped around from FF back to 0; the
upper byte was unaffected.

• So, the pointer is the same
(always addresses a byte) but if
declared as a word pointer, the
operation is done on a 16-bit
value; if a byte pointer, on an 8-
bit value.

• You wouldn’ t need to make a
distinction for:
MOV AX, [DI]

• Why?
– The use of AX indicates that DI

should be treated as a word
pointer.

6

We’ve seen indirect
addressing before!

• Remember homework 2 with our
array of numbers:
-14 = 0FFF2h
0 = 0000h
-6 = 0FFFAh
-42 = 0FFD6h
17 = 0011h
2 = 0002h

• We used BX as a pointer to each
element in the array in order to step
through and add them up (in part 1).

• We used DX as a pointer to the last
element in the array and compared it
to BX in order to tell i f we were
done.

• DS pointed to the start of the data
segment.

F2
FF
00
00
FA
FF
D6
FF
11
00
02
00

1C554
1C555
1C556
1C557
1C558
1C559
1C55A
1C55B
1C55C
1C55D
1C55E
1C55F

0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F

EA Offset from DSData

1C55DS

BX

DX

address of 1st word

address of last
word

F2
FF
00
00
FA
FF
D6
FF
11
00
02
00

0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F

Offset from DSData

mov bx, 0004h
mov ax, [bx] ; ax = FFF2
add bx, 2 ; bx = 0006
mov ax, [bx] ; ax = 0000
add bx, 2 ; bx = 0008
mov ax, [bx] ; ax = fff a
add bx, 2 ; bx = 000A
mov ax, [bx] ; ax = ffd6
add bx, 2 ; bx = 000C
mov ax, [bx] ; ax = 0011
add bx, 2 ; bx = 000E
mov ax, [bx] ; ax = 0002

BX serves as a pointer into the array. In HW2, we
used compare and conditional jumps to traverse the
array in a loop.

Not just to access words.

• example from p. 106, Irvine

7

Segment Defaults

• The offset created by an indirect
operand is assumed to be from
DS unless BP (or EBP) is part
of the indirect operand.

• If BP is involved, then the offset
is from the stack segment (SS
register).

• You can override the default
segment if necessary:
mov al, cs:[si] ;offset from CS

Another Example

• Example 3, part 1 from Irvine p.
107

Example, continued

• You can avoid the separate
instructions that increment BX:

• Example 3 from Irvine, part 2, p.
108

• This takes advantage of sum being
stored after the data. This is NOT a
good approach!

