Ledure 11: Addressng
Modes (Part 1)

» Operand Types (areview)
* Addressng Modes
e WORD andBYTE PTR

Basic Operand Types

» Threebasic types:
* immediate —a mnstant
* register —a CPU register
» memory — areferenceto a
locationin memory

| mmediate Operands

* Animmediate operandisa
constant expresson such as a
number, a charader, or an
arithmetic expresson.

mov d, 10 ;ad =10
mov bl, ‘A’ pbl="A
mov cx, ‘AB’ ;ex="AB’
mov dx, 123 ;dx=123h

» The asmbler cdculates the
value of the immediate operand
andinsertsit directly into the
maaine instruction.

Register Operands

» Aswe've seen, register
operands are eght or sixteen hit
registers (or 32if using the

extended registers).
mov ax, bx
mov a, bl

* Register addressngisvery
efficient because no memory
accesisrequired.

Memory Operands

» For memory operands, there ae
anumber of different ways that
they can be accessed using
asembly language.

* These different ways are
addressing modes.

Assmbly Language
Addressng Modes

* Memory isaccessed by cdculating
its effective address, using the
distance (or off set) of the datafrom
the beginning of a segment (usually
the data segment).

* Memory Addressng modes:
Direct
Register Indirea
Based or Indexed
Base-indexed

Base-indexed with dsplacement
(displacement isanumber or offset from a
variable)

Direa Operands

» A dired operandrefersto the
contents of memory at a
locaionidentified by alabel in
the data segment.

» We've seen many examples of
thisaready. Here aeafew
more:

—Irvine, p. 78

OFFSET Operator

The offset operator is used to move
the offset of alabel into a
register or variable.

anum

anum db 12

12 0200h

mov bx, offset anum

-- asembles as:
mov bx, 0200h

Why isthis useful ?
In hanework 2 we saw how
storing an addressin BX could
be used to step through alist of
numbers.

Ancther way to get the
address

¢« LEA BX, anum

* LEA standsfor load effective
address

¢ Thereisadifference between LEA
andMOQV ... OFFSET:

— LEA cdculates the label’ s offset at
runtime

— MOV ... OFFEET moves an immediate
valuethat is known at assembly time
* UseLEA if the effedive aldressof
an operand must be clculated at
runtime.

Direa-Offset Operands

* Youcan usethe alditionand
subtradion operatorsto accessa
list of values.

— The + operator adds to the off set
of avariable.

— The minus operator subtracts
from the labels offset.

Addition Example

* Irving, p. 79

Subtradion Example

* p.76inlIrvine

* Where have we seen this type of
addressng before?

Ledure 7 Example of
Direa Offset Addressng

o Example:
arra yB db 10h, 20h
arra yw dw 100h, 200h

mov al, arr ayB ;AL

Indirea Addressng

* Anindired operandis aregister
that contains the off set of data
in memory.

* When the offset of the variable
isplacal in aregister, the
register becomes a pointer to the
label.

* Youcan use Sl, DI, BX, and BP
to hdd indired operands.

— BX: base register

— S, DI: index registers

— BP: base pointer (contains an
off set from the SSregister)

= 10h
mov al, arr ayB+1 ;AL = 20h
mov ax, arr ayW ;AX = 100h
mov ax, arr ayWw+2 ;AX = 200h
mov ax, arr ayWwl ;AX = ?
CPU Memory

AX DS

oot

BX

0042:0100 | EEEE

Compare:

MOV AX,BX ;AX =0100

MOV AX,[BX] ; AX = EEEE

So why do we haveto useindirect addressing?
We could just put alabel at location 0042:0100
and da

MOV AX, label

;increment each word in an array list
data

LIST DW 5FFFh, 0Ah, 12h, 17h, 4h
.code
.startup

;step through ead e ement and increment
MOV AX, LIST
INCAX
MOV LIST, AX
MOV AX, LIST+2
INCAX
MOV LIST+2, AX

etc... for list+4, list+6, list+8

» Thiscould get pretty long! You need a

way to modify the address at execution
time so you can pu the @ovecodein a
loop.

* If you pu the aldressof the
base of thelist in BX, you can
useindired addressng and a
loop

;increment ead word in an array list
.data

LIST DW 5FFFh, 0Ah, 12h 17h, 4h
.code

startup
MOV BX, offset LIST
MOV CX, 5 ;5 elements

LUP: MOV AX, [BX] ; get item pointed to by BX
INC AX ;addonetoiit
MOV [BX], AX ;put badk into same place
ADD BX, 2 ;increment addressby 2
LOOP LUP ;loop badk to top

* Quite an improvement!

An even shorter way!

;increment each word in an array list
.data
LIST DW 5FFFh, 0Ah, 12h 17h, 4h
.code
startup
LEA BX,LIST
MOV CX,5
LUP: INC WORD PTR [BX] e
ADD BX, 2
LOOP LUP

e *Youcan'tjust say INC [BX]
because there is nothing in the
instruction to indicate if BX hasthe
addressof aword (like in this
example) or abyte.

* Youcan specify which oneitis
using WORD PTR or BYTE PTR

More on WORD and
BYTE PTR

;increment ead word in an array list
.data

LIST DW 5FFFh, 0Ah, 12h, 17h, 4h
.code

startup
LEA BX,LIST
MOV CX,5
LUP: INCWORD PTR[BX] ;List's1%entry
;after INC would
;be 6000n

VS,

LUP: INCBYTEPTR[BX] ;Lists 1 entry
;after INC would
:be 5FO0h

only thelow byte (FF) wasincremented. It
wrapped aroundfrom FF bad to 0; the
upper byte was unaffeded.

» S0, the painter is the same
(always addresses a byte) but if
dedared asaword padnter, the
operationis dore ona 16-bit
value; if abyte pointer, onan &
bit value.

* You wouldn't neal to make a
distinctionfor:

MOV AX, [DI]

* Why?

— The use of AX indicates that DI

should betreaed as aword
pointer.

We've seen indired

addressng lefore!

* Remember homework 2 with our

array of numbers:

-14 = OFFF2h
0=0000h

-6 = OFFFAh

-42 = OFFD6h

17=0011h
2=0002h
* Weused BX asapointer to each
element in the aray in order to step
through and add them up (in part 1).
* Weused DX asapointer to the last
element in the aray and compared it
to BX in order to tell if we were

EA Data Offset from DS
1C554 F2 0004
1C555 FF 0005
1C556 00 0006
1C557 00 0007
1C558 FA 0008
1C559 FF 0009
1C55A D6 000A
1C55B FF 000B
1C55C 11 0ooC
1C55D 00 000D
1C55E 02 000E
1C55F 00 000F

DS

BX [| addressof 1% word
S —

word

done.

» DSpointed to the start of the data
segment.

Data Offset from DS

=) 0004 mov bx, 0004h
EE 0005 mov ax,[bx] ;ax=FFR2
00 ooos add bx,2 ;bx=0006
00 0007 Mov ax,[bx] ;ax=0000
EA 0008 add bx, 2 ; bx =0008
= 0009 mov ax, [bx] ;ax=fffa
D6 000A add bx, 2 : bx=000A
EE oooB mMov ax,[bx] ;ax=ffd6
11 000C add bx, 2 ; bx =000C
00 oooD Mov ax,[bx] ;ax=0011
02 000E add bx, 2 : bx =0005
00 000F Mmov ax,[bx] ;ax=0002

BX serves as apointer into the aray. In HW2, we
used compare and conditional jumpsto traversethe

array in aloop.

Not just to accesswords.

» examplefrom p. 106, Irvine

Segment Defaults Ancther Example

» The off set creaed by an indired » Example 3, part 1 from Irvine p.
operandis assumed to be from 107
DS unlessBP (or EBP) is part
of theindired operand.

* If BPisinvolved, then the off set
is from the stack segment (SS
register).

* You can owverride the default
segment if necessary:

mov al, cs;[d] ;offset from CS

Example, continued

¢ Youcan avoid the separate
instructions that increment BX:

» Example 3 from Irvine, part 2, p.
108

¢ Thistakes advantage of sum being
stored after the data. ThisisNOT a
good approach!

