
1

Lecture 10

• Jump

• Loop

• Homework 3

• Outputting prompts

• Reading single characters

Transfer of Control
• The CPU loads and executes

programs sequentially.
• You’d like to be able to implement if

statements, gotos, and loops.
• These involve transfer of control,

where the order of statement
execution is modified.

• Two types:
– Unconditional Transfer – the program

branches to a new location in all cases
– execution continues at the new
address

– Conditional Transfer – the program
branches is a certain condition is true
(like the conditional jumps)

JMP
• JMP provides unconditional

transfer.
JMP address ; unconditional xfer

;to address
;(IP gets a new
; value)

address is a user-defined label

• In machine code, to JMP to an
address which is calculated by
adding the displacement in the
instruction to the value in IP or, for
longer jumps, replacing the value in
IP (and CS if it’ s a very long jump).

• In assembly, the assembler replaces
the user labels with the offset during
assembly (much easier!).

JMP Formats

• Three basic forms of (direct)
JMP instructions:
JMP SHORT destination

JMP NEAR PTR destination

JMP FAR PTR destination

• There are different machine
code formats for each of these.

2

JMP SHORT

• If the target label (address) is
within –128 to 127 locations
(bytes) of the instruction
following the JMP (remember,
the offset is added to the current
value of the IP, which is
pointing to the next instruction),
it is assembled as a SHORT
instruction (2 bytes). Only eight
bits are needed to specify the
address (these eight bits are
added to the IP)

Example
Offset Machine Code Source Code

0100 B4 02 start: mov ah, 2 ;loop start

0102 B2 41 mov dl, ‘A’ ;

0104 CD 21 int 21h ;disp A

0106 EB F8 jmp start ;jmp back

0108 ….. (rest of program)

How does it know it’ s a SHORT jump?
You’re jumping back so the assembler
already knows the distance!

Symbol Table
Symbol Value

start 0100

When assembling, the
assembler uses a location
counter to keep track of
where it is. When
“ jmp start” is assembled,
the location counter = 0108
To compute displacement:
0100 – 0108 = -8 = F8

JMP NEAR PTR

• What if the jump in the example
had been forward?
– If the JMP was used without the

SHORT qualifier it would have
assumed to be JMP NEAR PTR.

• NEAR PTR indicates that the
label can be anywhere in the
current code segment.

• A 16-bit displacement is moved
to the IP.

JMP FAR PTR

• FAR PTR allows you to jump
outside of your current code
segment.

• The label’s segment address is
moved to CS, and its offset is
moved to IP.

• This is a 5-byte instruction:
1 for opcode

2 for displacement (-> IP)

2 for segment (->CS)

3

LOOP

• LOOP is the easiest way to do
iteration.

• It’ s li ke a for-loop – it’ s for count-
controlled loops only where the
number of repetitions are known
before the loop is entered.

• What is it good for:
– execute a loop 12 times (for example)

– repeat instructions x times

• What it isn’ t good for:
– keep looping until the user types enter

LOOP, continued

• Format:
LOOP destination

• What loop does:
CX is the loop counter

LOOP subtracts one from CX

If CX is NOT equal to zero, control
transfers to destination

• Example:
mov cx, 5 ;cx = 5

mov ax, 0 ;ax = 0

start:

add ax, 1

loop start ;jump to start

after loop: ax = 5, cx = 0

Another LOOP example

• In C:
ax = 0;

for (i = 23; i >= 1; i--)

{

ax = ax + bx;

}

• In Assembly:
sub ax, ax ;or mov ax, 0

mov cx, 23

start: add ax, bx ;ax = ax + bx

loop start ;if cx >= 1,

;jumps to start

Loop: Errors to Avoid!

• Starting with CX = 0
– LOOP will decrement CX to

FFFFh and the loop will repeat
65,535 times!!!

• Altering the loop counter
– If CX (or CH or CL) is modified

inside the loop then the loop will
not behave the way you want it
to! For example, if you increment
CX then the loop will never stop.

• Also: Flags are not affected
when LOOP decrements CX –
even when CX goes to zero!

4

Conditional Loops

• The assembler also has
conditional loops.

• These loops still decrement CX
and terminate when it is zero
but they check other flags as
well .

• LOOPZ/LOOPE (loop if zero,
loop if equal)

• LOOPNZ/LOOPNE (loop if not
zero, loop if not equal)

LOOPZ/LOOPE

• LOOP while ZF = 1 and CX > 0

• Example, p. 203 in Irvine

LOOPNZ/LOOPNE

• Loop while ZF = 0 and CX > 0

• Example from p. 204, Irvine

Conditional Loop
Pitfalls

• When you used an
unconditional loop, you needed
to be careful that you did not
modify CX.

• You still need to be careful with
CX but now you ALSO need to
make sure you don’ t modify the
flags unintentionally.

• Example p. 203, Irvine

5

In-Class Exercise

• Write assembly code that
calculates the Fibonacci series:
1,1,2,3,5,8,13,… (Except for the
first two numbers in the
sequence, each number is the
sum of the preceding two
numbers). Use LOOP and set
the limit for 12 iterations.

Outputting Prompts

• Friday’s lecture wil l talk about
MS-DOS function calls.

• You’ ll need to use one in your
homework to output prompts to
the user.

INT 21h

• INT 21h is a DOS function call
(DOS services)

• You saw one example of this in
hw2:
mov ax, 4c00h
int 21h ;don’ t forget h!

• This returns to DOS from an
executing program.

• The 4Ch that goes into AH tells
DOS which function to perform
(in this case, returning to DOS).

Outputting the Prompt

• For hw3:
.data

prompt1 db "Enter the month: $"
.code
.startup

;prompt for first input
mov ah, 09h
mov dx, offset prompt1
int 21h

• What is this doing?
– 09h: String output function – writes a

string to standard output
– AH = 09, DX = offset of the string.
– The string must be terminated by a $

(dollar sign character)

6

More on Output

• If you want to output a string,
followed by a carriage return
and line feed (crlf), you will
need to put them in your string
also!

• example, p. 148 of Irvine

Warning!

• The $ at the end of the string tells
DOS when the string has ended.

• If you try to print out a string that
includes a $, it will not work…(and
you need to use a different method to
output the $)

• If you forget the $… DOS will
output all subsequent characters in
memory until it finds the ASCII
value for $ (24h). This could involve
many screens worth of garbage
output before it stops!

Reading in Characters

• 01h – filtered input with echo
– waits for a single character to be

entered (or, if one is in the input buffer
already just grabs it)

– stores it in AL

– Input: ah = 1

– Output: al = the character read

(fil tered? fil ters out control characters)

(echo? it displays the character you as you
type it. If you weren’ t using echo you
would not be able to see what you
typed!)

Example

• For hw 3, put 01h into ah, then use
int 21h to read a character typed by
the user:

mov ah, 01h ;get first
;month digit

int 21h

• The character read in will be in AL.
You’ ll need to convert it from an
ASCII character to a decimal
number:

sub al, 30h ;convert to

;decimal

7

• Disadvantages of using 01h:
– only one character at a time

– it will read any character typed, as
it is typed.

�
if you type the wrong character you
can’ t backspace and correct it – it
has already been read and processed
by your program

