
The Operating
System Project

Start Here

Version 4.60: September 2019

2

Table of Contents
What to do in Week 1 – Test0

• Brushing up your C programming skills.

• Compiling the program.

• Understanding how the program flows.

• What does Test0 do?

• What do you need to change?

• Step by step example.

What you need to do - Test1

What’s the goal of Test1?

• Summary information.

• Where do you find resources to help you?

3

Table of Contents(2)

What you need to do – Test2

What’s the goal of Test2?

• Summary information

• Where do you find resources to help you?

What you need to do – Test41

• What’s the goal of Test41?

• Summary information

• Where do you find resources to help you?

4

Brushing up your C programming skills.

While brushing up on your skills, it’s highly recommended that
you select an IDE for your project. This will save you many
many hours of time!

There are many places you can review C programming. The
document listed below looks at some of the differences
between C and Java. The concept of pointers is where most
java programmers have difficulty. If you need more
information, the web is your friend.

C_By_Example.ppt can be found on the Project Home Page – the
same place you found this Start_Here.ppt.

5

Compiling the program.
The first thing you need to figure out is the environment where you will be doing this project.

If you’re a LINUX or MAC fan, then life is easy since gcc is installed on every computer. I would recommend that as a
good way to get started. If you’ve been programming on Windows, then I’d recommend the free Visual Studio
version designed for students – it’s great though it may be a bit formidable to start with.

I've built this code with Eclipse on Windows, with gcc installed on Windows, with a standard gcc on Linux and gcc
on a MAC. It worked for all three environments.

The first thing you need to do is define whether you will be building on Windows or Linux. In reality, your code
should be able to run on Linux. Windows, or iOS. You are writing in standard C which is completely portable.
The underlying simulator has OS dependencies, but this should not affect you.

After you’ve moved the files from the webpage into a new directory, compile the program:

>gcc –g *.c -lm –std=gnu11 -Wall -o z502  Windows

>gcc –g *.c -lm –lpthread –std=gnu11 -Wall -o z502  Linux

This will create an executable called z502. Because of the –g, you can debug

this program.

6

Compiling the program.
Executing the program will give the following output:

This is Simulation Version 4.50 and Hardware Version 4.50.

Program called with 2 arguments: z502 test0

Calling with argument 'sample' executes the sample program.

Simulation is running as a UniProcessor

Add an 'M' to the command line to invoke multiprocessor operation

This is Release 4.50: Test 0

SVC handler: get_time

Arg 0: Contents = (Decimal) 4300384, (Hex) 419E60

Time of day is 0

SVC handler: term_proc

Arg 0: Contents = (Decimal) -1, (Hex) FFFFFFFF

Arg 1: Contents = (Decimal) 4300388, (Hex) 419E64

ERROR: Test should be terminated but isn't.

ERROR: Simulation did not end correctly

If you get this result, you know your compilation was successful. Your task now
for Test 0 will be to make this code work right, so it doesn’t produce the
errors you see here.

7

Compiling the program.

Native Hardware Platform
(Intel , etc.)

Native Operating System
(Windows , Linux, etc.)

Hardware Simulator
(z502.c)

Operating System
(base.c, StatePrinter.c)

The executable you just compiled

test0 test1 test2 testX test21 test22 ...

All elements inside the heavy box are in
a single process, running several threads
of execution.

All I/O devices in the program are simulated
entities. This includes the timer device
and the disk devices.

Try to treat the Hardware Simulator
as a “black box” and use the architecture
specification instead.

You just compiled the program shown in the solid box. It includes a hardware simulator, the beginnings of an
operating system that you will expand, and test cases that drive your development of the OS.

8

Understanding how the program flows.
The next slides describe the starting code that’s given to you (what you’ve already
compiled). It shows how the program flows. The important actions are:

Test0 in test.c contains system calls – requests for service from the Operating System.

Those system calls come to the routine svc() in base.c. This is in the OS – you’re writing
the OS so you own this code.

In svc, you call (make a subroutine call) to the hardware in order to implement the
action requested by Test0.

9

The Execution of test0

test.c

Hardware

base.c

Z502Clock
(Memory

Mapped IO)
Z502Context

(Memory Mapped IO)

SVC

osInit

test0 main

Z502Halt
(Memory

Mapped IO)

4

10

9

7

8

6

5

3 2

1

10

The Execution of test0

4

9

8

7

6

5

3

2

1 All C programs start in main(). A temporary context is created and the simulation
starts by requesting to run on that context.
osInit is a routine in your operating system. For right now, all it does is create a
context that will allow test0 to run.

We go out to test0. It is time to run the user code.

Test0 does a system call GET_TIME_OF_DAY. A system call produces a software
interrupt that causes execution to go to svc(), the software service routine.

svc must get the time in order to service the system call. It calls the hardware to do
that. It passes by reference a variable in which the time can be placed.

Z502Clock is a hardware routine that keeps track of the time. It passes back this
time to svc.

svc passes back the time to test0. test0 prints out that time as part of its code.

test0 does a TERMINATE_PROCESS system call – it’s all done with its job. It makes
this call and again the execution ends up back in svc.

svc must handle this terminate_process request. Eventually this code will be more
complicated, but for right now, since there’s nothing else for the OS to do, it simply
ends the simulation by halting the processor.

11

What does Test0 do?
void test0(void) {

printf("This is Release %s: Test 0\n", CURRENT_REL);

GET_TIME_OF_DAY(&ReturnedTime);

printf("Time of day is %ld\n", ReturnedTime);

TERMINATE_PROCESS(-1, &ErrorReturned);

// We should never get to this line since the TERMINATE_PROCESS call

// should cause the program to end.

printf("ERROR: Test should be terminated but isn't.\n");

} // End of test0

There are two system calls:

GET_TIME_OF_DAY(& ReturnedTime); Get the time the hardware thinks it is. This is NOT in any normal
units like seconds or whatever. Note that following the C convention, we’re passing the ADDRESS of the variable
Z502_REG1 (that’s what the “&” does.) Then in the next line

printf("Time of day is %d\n", ReturnedTime);

the value that’s in the variable is used in the printf statement.

TERMINATE_PROCESS(-1, & ErrorReturned); has two arguments. The “-1” says terminate the current
process. The & ErrorReturned gives the address of a variable that the OS can use to return an error.

System Call Interface document is where you will find a description of the system calls. Syscalls.h contains the
macros that implement these system calls.

12

Test0 - What do you need to change?
To make Test0 work, “all” you need do is change code in svc(). Let’s start by looking at the original code:

void svc(SYSTEM_CALL_DATA *SystemCallData) {

short call_type;

static short do_print = 10;

short i;

call_type = (short)SystemCallData->SystemCallNumber;

if (do_print > 0) {

printf("SVC handler: %s\n", call_names[call_type]);

for (i = 0; i < SystemCallData->NumberOfArguments - 1; i++){

//Value = (long)*SystemCallData->Argument[i];

printf("Arg %d: Contents = (Decimal) %8ld, (Hex) %8lX\n", i,

(unsigned long)SystemCallData->Argument[i],

(unsigned long)SystemCallData->Argument[i]);

}

do_print--;

}

} // End of svc

• SystemCallData - a data structure containing everything we know about this system call.

• Call_type– a variable contains the type of system call that’s being passed to svc. In svc,
this variable, as well as the arguments requested by the system call in test0, are printed
out so you can see them.

• The do_print variable is here simply to do some initial printout, but then not clutter up
printouts when there are many system calls. You can see how it works from the code.

13

Test0 - Step by step example.
void svc SYSTEM_CALL_DATA *SystemCallData) {

short call_type;

static INT16 do_print = 10;

INT32 Time;

MEMORY_MAPPED_IO mmio;

call_type = (short)SystemCallData->SystemCallNumber;

if (do_print > 0) {

// same code as before

}

switch (call_type) {

// Get time service call

case SYSNUM_GET_TIME_OF_DAY: // This value is found in syscalls.h

mmio.Mode = Z502ReturnValue;

mmio.Field1 = mmio.Field2 = mmio.Field3 = 0;

MEM_READ(Z502Clock, &mmio);

*(long *)SystemCallData->Argument[0] = mmio.Field1;

break;

// terminate system call

case SYSNUM_TERMINATE_PROCESS:

mmio.Mode = Z502Action;

mmio.Field1 = mmio.Field2 = mmio.Field3 = 0;

MEM_WRITE(Z502Halt, &mmio);

break;

default:

printf("ERROR! call_type not recognized!\n");

printf("Call_type is - %i\n", call_type);

} // End of switch

} // End of svc

Declare the MEMORY_MAPPED_IO structure here.

This is easy – all I did was find the code in sample.c
that does this same call to the hardware. Then I
copied it here! At this point, it’s magic.

We’re returning the time to the caller (in test0).
The ARG1_PTR could be pointing to 32 bits or
64 bits. We cast it to long since the data value
to match the underlying OS. Then the “*” on
the front says this is a pointer. (This is not
obvious stuff if you’re new to C).

In this test, when Test0 says it wants to
terminate, there’s nothing more to do, so
we simply call the hardware to say we’re
done. Note how this is in a different case
statement from the time.

If a illegal system call number comes in
here, we want to know about it and
report an error.

14

Test0 - Step by step example.

This is Simulation Version 4.50 and Hardware Version 4.50.

Program called with 2 arguments: Z502.exe test0

Calling with argument 'sample' executes the sample program.

This is Release 4.50: Test 0

SVC handler: get_time

Arg 0: Contents = (Decimal) 4300384, (Hex) 419E60

Time of day is 45

SVC handler: term_proc

Arg 0: Contents = (Decimal) -1, (Hex) FFFFFFFF

Arg 1: Contents = (Decimal) 4300388, (Hex) 419E64

Hardware Statistics during the Simulation

Context Switches = 1: CALLS = 13: Masks = 0

The Z502 halts execution and Ends at Time 50

Exiting the program

Here’s what the execution looks like after the code has been changed.
Note that the time of day is reported as “45” in this case (you’re number may
be different). Note also that the simulator says that the test ended happily.

15

Steps For a Perfect Project (1)
• DO NOT modify any of my files. You can change base.c,

StudentConfiguration.h, and you can add any other .c and .h files.

• DO NOT use any of the routines in z502.c in any way other than the
public interface.

16

Steps For a Perfect Project (2)
• StudentManual.pdf – contains the output requirements for

each of the tests.

• Some people like to keep a source maintenance system such as
GitHub. Do NOT make it public – if you do it’s the same as
giving everyone your code – and that’s plagiarism.

• You will get points for my being able to compile and run your
code with no problems. This is called code portability.

17

Steps For a Perfect Project (3)
• Use an IDE. This is a tremendous time saver. I use Eclipse but

many people are fond of Microsoft Visual Studio. Any choice is
up to you.

• You can develop your code on whatever platform you wish.

• When you hand in your project, I will compile and run it from
the command line in Windows or Linux. Those are the ONLY
two OSs I will use. It shouldn’t matter which I use.

• On the command line, I will compile using the commands given
on page 5 of this document. If you want to give me a script
(makefile, .bat file) I will use that. If your code does not
produce an executable, you will lose points. This is the meaning
of “portability.”

18

Test1 - What you need to do
Overview

This is a “small” incremental step in your code development. It
involves only a couple of pieces:

1. Be able to read test names from the command line and
execute the correct test.

2. Create a method osCreateProcess that will enable you to
generate and save state for each process.

3. In SVC, build a way for a system call GET_PROCESS_ID() to get
information about the running process.

What follows are steps to accomplish this.

19

Test1 - What you need to do

1. Be able to read test names from the command line and
execute the correct test.

In osInit, there’s a line of code 

if ((argc > 1) && (strcmp(argv[1], "sample") == 0)) {

It’s purpose is to catch the command line and look at the test you are

requesting. If you create the line

if ((argc > 1) && (strcmp(argv[1], “test1") == 0)) {,

Then it will direct your code instead to start in test1.

20

Test1 - What you need to do

2. Create a method osCreateProcess that will enable you to
generate and save state for each process.

In Step 1 (the last slide), you learned how to figure out what test you are
running. That’s only ONE of the characteristics of the process you are
creating. To save all these properties, it’s easiest to create a structure called
a Process Control Block (a PCB).

AND since you will be creating many more processes, it’s easiest to have a
separate method that you use for this task.

You will be asked for the Process ID – this is an Operating System
characteristic assigned to a process; you can use whatever value makes
sense to you. Store the Process ID in the PCB.

21

Test1 - What you need to do

3. In SVC, build a way for a system call GET_PROCESS_ID() to get
information about the running process.

This will work the same way you did the GET_TIME SYSTEM CALL, but now,
instead of asking the Z502 Hardware for the answer, you will ask your own
Process Management code to read the PID of the running process.

22

Test2 - What you need to do
What does Test2 do? This section contains:

• Summary information.

• Starting Architecture of the Simulator Environment; the
InterruptHandler

• Implementation of Test2:

– Step 1

– Step 2

– Step 3

23

What does Test2 do?
void test2(void) {

long SleepTime = 100;

INT32 time1, time2;

aprintf("This is Release %s: Test 1\n", CURRENT_REL);

GET_TIME_OF_DAY(&time1);

SLEEP(SleepTime);

GET_TIME_OF_DAY(&time2);

aprintf("Sleep Time = %d, elapsed time= %d\n", SleepTime, time2 - time1);

GET_PROCESS_ID("", &MyProcessID, &ErrorReturned);

GET_TIME_OF_DAY(&Time2);

aprintf("Test 4, PID %ld, Ends at Time %ld\n", MyProcessID, Time2);

TERMINATE_PROCESS(-1, &ErrorReturned);

printf("ERROR: Test should be terminated but isn't.\n");

} // End of test2

24

What does Test2 do?
Let’s look at this code. A lot is the same as test0. There are two calls to
GET_TIME_OF_DAY, and one call to TERMINATE_PROCESS. One new piece is the
SLEEP. The call GET_PROCESS_ID was used in test1.

There is a new system call:
SLEEP(TimeToSleep); With this call, we’re not getting a value returned to us –
we’re simply passing to the OS, the amount of time we want to “sleep”. We
don’t want control to come back to this code for a least TimeToSleep time units.

There is a repeat system call:
GET_PROCESS_ID("", &MyProcessID, &ErrorReturned); With this call, we’re
getting a value returned to us – we give to the call the address of where we
want it to return the process ID of the current process – the one making the
call. The Process ID (or PID) is a property of the process – it is kept in the
Process Control Block.

The document CS502SystemCalls is where you will find a description of the
system calls. Syscalls.h contains the macros that implement these system calls.

25

Test2 – Summary Information
Interrupt Handling

An Operating System is just a program waiting for
someone to give it something to do. It’s the
hardware that transfers control into the OS. There
are three ways to do this:
– Interrupts (starts executing at InterruptHandler in base.c)

• TIMER_INTERRUPT from the delay timer
• DISK_INTERRUPT from disk 1, 2, ...

– Faults (starts executing at fault_handler in base.c)

• INVALID_MEMORY fault
• CPU_ERROR fault
• PRIVILEGED_INSTRUCTION fault

– Traps (starts executing at svc in base.c)

• SOFTWARE_TRAP for each system call

26

Test2 – Summary Information
System Modes

Modes have to do with privileges. The code executing in User mode has
access to the code in Test.c and access to data associated with the test. In
Kernel Mode, the code can see, touch, smell, and modify ANYTHING!

– User Mode

• Address space for user programs is divided into

– C code “program” memory for instructions and for local variables.

– User “data” memory, referenced through a virtual address space, and called
MEMORY. You don’t need to know this until Test21.

– Kernel Mode

• Instruction set includes C language instructions, plus

– access to all the Z502 registers

– access to the privileged instructions of the Z502 instruction set

» I/O primitives

» memory primitives

» context switching primitives

– These are all available through provided macros

27

Test2 – Summary Information Hardware
Actions on Interruption

• User registers are saved in Z502 Hardware Context – this is
done by the hardware so you don’t have to worry about it.

• The InterruptHandler queries the hardware to find out about
the interrupt. There are three requests to the hardware.
These are explained in excruciating detail in Z502 Architecture
Specification – see Section 5.3.

• The calls:
a) ask for the device that caused the interrupt and also get

it’s status.

• Execution mode is set to kernel –we’re now running in the OS!
• Hardware begins execution at InterruptHandler when the

hardware has something to communicate (i.e., it took an
error, it’s successfully completed its work, etc.)

28

Test2 – The InterruptHandler
void InterruptHandler(void) {

INT32 DeviceID;

INT32 Status;

MEMORY_MAPPED_IO mmio; // Enables communication with Z502

// Get cause of interrupt

mmio.Mode = Z502GetInterruptInfo;

mmio.Field1 = mmio.Field2 = mmio.Field3 = 0;

MEM_READ(Z502InterruptDevice, &mmio);

DeviceID = mmio.Field1;

Status = mmio.Field2;

// ALWAYS ALWAYS ALWAYS

// Check the status of the interrupt to make sure no

// error occurred.

// Do Whatever Work You Want Here

} // End of InterruptHandler

29

Test2 – Summary Information
Hardware Context

• The context is the state of the executing CPU; essentially its
registers.

• The Hardware context is really just the set of registers , plus
an entry address.

• The OS only deals with the handle to a context. Typically this
is stored in the process control block. You don’t EVER need to
know what’s in that context.

• Z502 Operations for manipulating contexts

– Z502InitializeContext

– Z502StartContext

30

Writing Test2
Write this test in multiple stages – get each stage working before you start the

next one; take baby steps.

• Stage 1: In svc for the SLEEP system call, you should:
a) Change osInit so it will execute test2.

b) Start the clock (see sample.c for an example of this – see also Z502Hardware.html for
the API for the timer.

c) Wait for a timer interrupt by generating a Memory Mapped IO  Z502Idle

d) Control will not pass back from IDLE to it’s caller until the timer has completed its delay.

• Stage 2: In method OSCreateProcess ()
a) Ask the Hardware for the Context for this process. You already know how to create the

PCB where you store that Context.

• Stage 3: Timer Queue is an object that contains an ordered list of the
processes waiting for or currently being handled by the timer.

a) Your Svc calls AddToTimerQueue()

b) Your InterruptHandler  TimerInterrupt RemoveFromTimerQueue();

31

Components In The Starter Code

Test.c

z502.c

O.S.

Z502Clock
(Memory Mapped IO)

Z502Context –
used for Z502InitializeContext & Z502StartContextZ502Timer

(Memory Mapped IO)

Z502Idle
(Memory Mapped IO)

SVC

fault_handler

osInit

August, 2017

test0 test1 test2 test25o o o o o o o o o

InterruptHandler

main

OS Components – What you need to Build for test 2

Test.c

z502.c

O.S.

SVC

InterruptHandlerTimer
Queue

Start
Timer

osInit

August, 2017

main

32

Z502Clock
(Memory Mapped IO)

Z502Context –
used for Z502InitializeContext & Z502StartContext

Z502Timer
(Memory Mapped IO)

Z502Idle
(Memory Mapped IO)

33

The Execution of test2

test.c

z502.c

base.c

SVC

osInit

August, 2017

test2
main4

10

9

7

8

6

5

SLEEP

3a

2

1
OS_

Create_Process

InterruptHandler

Timer
QueueStart_

Timer

11

12

13

14

Z502Clock

Z502StartContext

Z502Timer Z502Idle Z502InitializeContext

3b

New Process
Starts Here

34

The Execution of test2

4

10

9

8

7

6

5

3

2

1 The program starts in main(), and passes control to osInit.

osInit figures out what test you want to run. It passes the identifier for that test to
os_create_process.

We come to os_create_process, a routine YOU write. Here we ask the hardware for
a context(Z502InitializeContext) , create the PCB, and then call Z502StartContext.

Z502StartContext causes control to be passed to a new thread which transfers
control to test2.

Note: Test2 does various system calls, but we’re looking only at SLEEP in this picture.
Test2 does a system call SLEEP transferring control to svc.

svc hands control of the SLEEP request to start_timer, a routine YOU write.

start_timer, enqueues the PCB of the running process onto the timer_queue.

Start_timer calls the Z502Timer to give the request for a future interrupt. The timer
starts thinking about the time, but interrupts in the future!!
Start_timer realizes there’s nothing else to do and so calls Z502Idle. This routine says
to idle the processor until an interrupt occurs.

Svc must handle this terminate_process request. Eventually this code will be more
complicated, but for right now, since there’s nothing else for the OS to do, it simply
ends the simulation by halting the processor.

35

The Execution of test2

10
When the delay timer expires, an interrupt is generated. This causes the processor
to go to the interrupt handler.

In the interrupt handler, take the PCB off the timer queue. This is the process that
has been sleeping!

When you return from the InterruptHandler, execution returns back to start_timer,
to the line AFTER your call to Z502Idle.

Start_timer returns to svc.

svc returns to test2.

11

12

13

14

36

Making Tests Visible
• Your test may run perfectly, but if I can’t see it happen,

it does you no good.

• Your code should implement the Scheduler Printer. The
auxiliary source for this is supplied to you and examples
of calling the Scheduler Printer are given in sample.c. In
syscalls.h, there are detailed comments showing you
the meaning of each of the fields.

• Students frequently ask “when should I call the
SchedulerPrinter. The easiest answer is to do it
whenever your ready Q changes – whenever something
is added or removed from the Q.

37

Test5 - What you need to do
• What’s the goal of Test5?

• Summary information.

• Where do you find resources to help you?

• Architecture of the Simulator Environment

• Z502 Hardware Organization and Architecture

• Generic Operating System Structure

38

Steps For a Perfect Project
• When creating a process, put it on the ready Q but don’t run it yet.

• How to use up time in the dispatcher while waiting for a process to
be on the ready Q:

void dispatcher() {

while(ReadyQueueFront() == NULL) {

CALL();  CALL is a C macro.

}

// Other dispatcher code

}

This has the effect of advancing the simulation time until the
next interrupt occurs.

OS Components – What you need to Build (eventually)

Test.c

z502.c

O.S.

SVC

InterruptHandlerTimer
Queue

Start
Timer

Ready
Queue

GiveUpCPU

Dispatcher

Make_Ready_
To_Run

osInit

August, 2017

main

39

Z502Clock
(Memory Mapped IO)

Z502Context –
used for Z502InitializeContext & Z502StartContext

Z502Timer
(Memory Mapped IO)

Z502Idle
(Memory Mapped IO)

40

Testx m - Multiprocessors
The z502 system can be run in multiprocessor mode.

Do this by executing a test including an “m” as the second argument.

“Z502 test6 m”

What you must do to make this work:

1. Make your code reentrant – now multiple threads will be executing your
dispatcher and other OS simultaneously.

2. In single processor mode, a StartContext assumes that the caller will be
suspended – you’re using START_NEW_CONTEXT_AND_SUSPEND.

3. In Multiprocessor mode, the dispatcher starts EVERY process that’s on the
Ready Q (Using START_NEW_CONTEXT_ONLY) and then when there are
none present, suspends itself using SUSPEND_CURRENT_CONTEXT_ONLY.

4. The hardware provides the support you need, providing you with the
current context so you can determine a process’ PID in an easy way.

41

Testx m - Multiprocessors
• In the mode we've been using for "single processor", what we mean by that

is that there are TWO processors running; one processor is used to execute
all the user processes. This processor must be shared among all the
processes. So we use the flag START_NEW_CONTEXT_AND_SUSPEND to
accomplish this; every time we start a new context (process) on a processor,
we have to suspend the process that's currently running there. The second
processor is for the exclusive use of the interrupt handler.

• This is what we call "single processor".

• In "multiple processor" mode, there are many processors to run the
processes in a test.

• In the tests we have, there are more processors than processes, so we don't
really need to share processors - each process can have its own processor -
it's what's called "processor affinity". In real life this approach produces the
best performance because the state of the process is maintained in the
caches and registers of the processor.

42

Testx m - Multiprocessors
• Since each processor runs only one process, the hardware scheduling is

concerned with keeping the processor idle (if there's nothing for the process
to do - the process is waiting) or the processor is running (it's doing work for
that process.)

• Initially the simulation starts up running just one processor.

• When we create a new process, we need to place it on a processor. We do
that with a START_NEW_CONTEXT_ONLY -- we start the new context on its
own processor, and we continue running the current context on its current
processor. When we do this action, we add one more active processor.

• OK - so now we have all the processors initialized, and all
containing/executing/implementing a process. When a process is waiting
for an event (disk, timer), it tells its processor to
SUSPEND_CURRENT_CONTEXT_ONLY. So that process ceases execution right
there.

43

Testx m - Multiprocessors

When the event for which that process is waiting does occur, then we need to
wake up that process AND that processor in order to continue execution. For
that we use START_NEW_CONTEXT_ONLY since the waker-upper (probably the
dispatcher) will want to continue looking on the ready queue for processes to
run. Some people might want to implement a dispatcher as a separate process
for use in this way.

When a process terminates, it does one last
SUSPEND_CURRENT_CONTEXT_ONLY and NO ONE ever wakes it up! From the
hardware's point of view, that process (and that processor) are no longer in use.

SUSPEND_CURRENT_CONTEXT_ONLY - Suspend the current context but don't
start anyone
START_NEW_CONTEXT_ONLY - Start the context but don't suspend
START_NEW_CONTEXT_AND_SUSPEND - Both start the context AND suspend

44

Before You Hand In Your Code
What do you need to do to assure the highest possible
grade?
• Make sure your code is portable. I need to be able to compile your code on

Linux or Windows using the command line. You will need to export your
code OUT of an IDE to make sure this happens.

• I need to be able to say “z502 test7”. You will lose points if I have to
recompile your code for every test.

• You must use the SchedulerPrinter correctly. The guidelines are in the
Student Manual.

• Every test must finish in less than 30 seconds. If this isn’t true, it means you
have too many print statements or too many sleeps.

45

0000 5A 00 00 08 04 80 01 00 11 00 00 06 00 00 00 2E

0001 FF FF FF E0 00 00 00 00 00 00 00 00 00 00 00 00

000D FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000E FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0011 00 72 6F 6F 74 00 00 00 EE 09 00 FD 12 00 00 00

0012 13 00 14 00 15 00 16 00 17 00 18 00 19 00 1A 00

Test21 - What you need to do

Notes on what you see here:
First column: Address on the disk of the first byte in the line.
First Line: Contains bytes 0 – 15 (0 – F) – for instance, location 03 contains an 08,

location 0F contains a 2E.
Second Line: Column 1 is 0001 which means this contains bytes 10 – 1F
First Line contains Block 0.
Block 0: Refer to the Z502FileSystem document, Page 7.

Bytes 2 – 3 contain 0800, the length of the disk.
Byte 4 contains a 04. Bitmap size. See Page 7  10(hex) blocks assigned to bitmap.
Byte 5 contains a 80(hex). See page 7  200(Hex) blocks assigned to swap.
Bytes 6 – 7 contain 0001, the sector containing the start of the bit map.
Bytes 8 – 9 contain 0011, the sector containing the root directory.
Bytes A – B contain 0600(hex), the start of the Swap Area.

46

0000 5A 00 00 08 04 80 01 00 11 00 00 06 00 00 00 2E

0001 FF FF FF E0 00 00 00 00 00 00 00 00 00 00 00 00

000D FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000E FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

000F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0011 00 72 6F 6F 74 00 00 00 EE 09 00 FD 12 00 00 00

0012 13 00 14 00 15 00 16 00 17 00 18 00 19 00 1A 00

Test21 - What you need to do

Notes on what you see here:
Lines 0001 – 0010 are the bitmap. These are bytes 00010 – 0010F. Note that lines 0002 –

000C are not listed which means they contain only 0’s.
The bitmap has had bits set that indicate the sectors that are in use. ALL the bits (FF’s) are

set from 000D0 to 0010F indicating the swap area is not available for use by the file
system.

Line 0011 (bytes 00110 – 0011F) are the root file header. See slide 10 of File System Spec.
Bytes 0C – 0D of this line are the location of the index block for this directory 0012.
Line 0012 (bytes 00120 – 0012F) contain the index block for the root directory. See slide 13

47

Test41 - What you need to do
• What’s the goal of Test41?

• Summary information.

• Where do you find resources to help you?

• Architecture of the Simulator Environment

• Z502 Hardware Organization and Architecture

• Generic Operating System Structure

48

The Execution of test41 and test42

test.c

z502.c

base.c

Z502MemoryRead

SVC

OS_
Init

August, 2017

test41 main
4

10

9

7

8

6

5 GET_PROCESS_ID

3a

2

1
OS_

Create_Process

InterruptHandler

Process_Management

Z502MemoryWrite

11

12

Fault_Handler

Dispatch

Z502StartContext

Z502InitializeContext

New Process
Starts Here

3b

49

The Execution of test41 and test42

4

10

9

8

7

6

5

3

2

1

The test may do system calls as we saw in test2 – test15. The example we see here
is GET_PROCESS_ID.

svc hands control of the system call to the appropriate handler.

The test does a Memory Request (either read or write). That request ends up in the
hardware. If the hardware can handle it, you’re done.

If hardware can NOT handle the call, then a page fault is generated. You do the work
in your fault handler to make the memory access successful.
After completing the page_fault work, always call your dispatcher to schedule the
same or a new process. NEVER return from the fault handler.

Reads and writes are handled the same way.

The program starts in main(), and passes control to osInit.

osInit figures out what test you want to run. It passes the identifier for that test to
os_create_process.

We come to os_create_process, a routine YOU write. Here we ask the hardware for
a context(Z502InitializeContext) , create the PCB, and then call Z502StartContext.

Z502StartContext causes control to be passed to a new thread which transfers
control to test21.

