
C By Example 1

The assumption is that you know Java and need

to extend that knowledge so you can program

in C.

1. Hello world

2. declarations

3. pass by value/reference

4. arrays & structures

5. pointers

6. library functions

7. Compiling and Debugging – gcc and gdb

8. Shell Commands

C By Example

C By Example 2

1. “Hello World” – The

Simplest Program
#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello, world\n");

}

This is an include file. It

contains definitions of

constants, structures, and

functions

Printf is a library

subroutine that you call to

output data to a screen or

file.

Every C program must

have a main. It’s where the

program starts execution.

This is the form used to

declare and pass

parameters into a program

or subroutine.

This says argc is an int

and argv is a char string.

If I run this program by

saying “prog1 - C is fun”

Then argc is 5 and argv[0]

is “-”, argv[1] is “C”, etc.

C By Example 3

Declarations

#include <stdio.h>

int main(int argc, char *argv[])

{

int var_A;

int *ptr_var_A;

double pi = 3.14159;

char string[32];

var_A = 17;

if (argc > 1)

var_A = atoi(argv[0]);

ptr_var_A = &var_A;

strcpy(string, "Hello, world");

printf("String->%s var_A->%d ptr_var_A-> %X pi-> %f\n",

string, var_A, ptr_var_A, pi);

}

Var_A is declared to be an

integer. ptr_var_A is

declared to be a pointer (or

address) of an integer.

If there is an input argument, then

use it for the value of var_A.

The “&” says to take the address

of the variable. Strcpy is a library

routine to copy strings.

C By Example 4

Pass by Value and Pass by Reference
#include <stdio.h>

void subroutineA(int , int *);

short functionB(int , int);

int main(int argc, char *argv[])

{

int var_A;

int var_B;

var_A = 17;

var_B = 33;

subroutineA(var_A, &var_B);

printf("Return from SubA: %d %d\n", var_A, var_B);

printf("Return from FunB: %d\n", functionB(var_A, var_B));

} // End of main

void subroutineA(int A, int *B)

{

*B = A; // B is a pointer to an int

} // End of subroutineA

short functionB(int A, int B)

{

return(A + B);

} // End of functionB

These are called

“prototypes”.

Var_A is passed by value. Note

the & on var_B which means that

its address is passed in.

Note how int and ptr to int are

declared.

C By Example 5

Arrays and Structures (1)

#define ARRAY_LEN 32

#include <stdio.h>

typedef struct

{

int arr1[ARRAY_LEN];

char string[ARRAY_LEN];

} MY_STRUCT;

void subroutineA(MY_STRUCT *);

This is called a “define”. Used

to parameterize constants.

Here we define the structure

MY_STRUCT. It’s laid out in

memory as 32 ints (4 bytes each)

plus 32 bytes arranged as a string.

We’ll be passing the address of

this structure to the subroutine.

C By Example 6

Arrays and Structures (2)
int main(int argc, char *argv[])

{

int index;

MY_STRUCT my_struct;

for (index = 0; index < ARRAY_LEN; index++)

{

my_struct.arr1[index] = index;

my_struct.string[index] = (char)index;

}

subroutineA(&my_struct);

printf("Return of SubA: %d %c\n",

my_struct.arr1[0], my_struct.string[0]);

} // End of main

void subroutineA(MY_STRUCT *xx)

{

xx->arr1[0] = 17;

xx->string[0] = (char)33;

} // End of subroutineA

Declare an instance of the

structure.

Here we’re fillling in the structure

Pass the structure by reference.

Note the use of “->” to reference

the structure.

What is printed out by this program?

C By Example 7

Pointers
#include <stdio.h>

int main(int argc, char *argv[])

{

int a, b;

int *p;

a = b = 7;

p = &a; // p points to a

printf("p = %d\n", *p); // 7 is printed

*p = 3;

printf("a = %d\n", a); // 3 is printed

p = &b;

*p = 2 * *p - a;

printf("b = %d\n", b); // 11 is printed

p = &a;

printf("Input an integer ");

scanf("%d", p);

} // End of Main

a and b are ints. p is a

pointer to an int.

C By Example 8

Library Functions (1)

#include <ctype.h>

int isalnum(int c); // returns TRUE if char is alpha or numeric

int isspace(int c); // returns TRUE if char is white space

int tolower(int c); // returns the conversion of c to lower case

#include <math.h>

double cos(double x);

double exp(double x);

#include <stddef.h>

#typedef unsigned size_t;

#define NULL ((void *) 0)

#define offsetof(s_type, m) \

((size_t) &(((s_type *) 0) ->m))

#include <stdio.h>

#define EOF (-1) // End of File

#define NULL 0

These pages show include files and the library

function prototypes that are contained in them.

C By Example 9

Library Functions (2)

#include <stdlib.h>

int atoi(const char *s);

int rand(void);

void *malloc(size_t size); // Allocates "size" bytes of memory

#include <string.h>

void *memcpy(void *to, void *from, size_t n);

char *strcat(char *s1, char *s2); // Concatenates

size_t strlen(char *s);

C By Example 10

Compilation And Debugging

Babbage gcc –g prog4.c –o prog4

babbage% gdb prog4

(gdb) l

(gdb) b 24

(gdb) r

(gdb) p index

(gdb) s

(gdb) c

(gdb) p my_struct

$4 = {arr1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31},

string = "\000\001\002\003\004\005\006\a\b\t\n

\013\f\r\016\017\020\021\022\023\024

\025\026\027\030\031\032\e\034

\035\036\037"}

(gdb) q

babbage %

-g says prepare for debugging. –

o is the name of the executable.

l says list lines of the program

b says set a breakpoint (at line 24 in this case)

r means run the program.

p says to print a variable.

s == single step

c == continue to next

breakpoint.

q == quit

C By Example 11

Shell Commands

babbage% vi make_all

babbage% chmod 700 make_all

babbage% ls -l make_all

-rwx------ 1 jbreeche users 144 Jul 21 04:19 make_all

babbage% more make_all

gcc -g prog1.c -o prog1

gcc -g prog2.c -o prog2

gcc -g prog3.c -o prog3

gcc -g prog4.c -o prog4

gcc -g prog5.c -o prog5

gcc -g prog6.c -o prog6

babbage% mkdir foo

babbage% cd foo

babbage% echo "This is a line" > bar

babbage% cat bar

This is a line

babbage% rm bar

You need an editor – either emacs or vi.

Change privileges

ls –l == list directory contents

more == print out file, 1 screen at

a time.
mkdir == create a directory

cd == change directory

echo == print a line. In this case “>”

puts that line in a file.

rm == delete a file (rmdir == delete a

directory.)

“man” and “apropos” are my favorites.

