C By Example

The assumption is that you know Java and need

©NOOhOWNE

to extend that knowledge so you can program
in C.

Hello world

declarations

pass by value/reference

arrays & structures

pointers

library functions

Compiling and Debugging — gcc and gdb
Shell Commands

C By Example 1

1. “Hello World” — The
Simplest Program

#include

int

} N\

<stdio.h>

main(int argc, char *argv[])

{
printf(“Hello, worldm

<

This is an include file. It
contains definitions of
constants, structures, and
functions

\

N\

Every C program must
have a main. It’s where the
program starts execution.

Printf is a library

file.

subroutine that you call to
output data to a screen or

C By Example

This is the form used to
declare and pass
parameters into a program
or subroutine.

This says argc is an int
and argv is a char string.
If I run this program by
saying “prog1 - C is fun”
Then argc is 5 and argv[O0]
is “-”, argv[1] is “C”, etc.

Declarations

#include

int

{

<stdio.h>

main(int argc, char *argv[])

Var_A is declared to be an
integer. ptr_var_Ais
declared to be a pointer (or
address) of an integer.

If there is an input argument, then
use it for the value of var_A.

int var A; <
int *ptr var A;
double pi = 3.14159;
char string[32];
if (arge > 1)
var A = atoi(argv[0]);
ptr var A = &var A;<€

The “&” says to take the address
of the variable. Strcpy is a library
routine to copy strings.

strcpy(string, "Hello, world");

printf("String->%s var A->%d ptr _var A-> %X pi-> %$f\n",
string, var A, ptr var A, pi);
}
C By Example 3

Pass by Value and Pass by Reference

#include <stdio.h>
These are called

void subroutineA(int , int *); / “prototypes”.

short functionB(int , int);

int main(int argc, char *argv[])
{
int var A; .
int var B; Var_A is passed by value. Note

the & on var_B which means that
var A = 17; / its address is passed in.
var B = 33;

subroutineA(var A, &var B);

printf("Return from SubA: %d %d\n", var A, var B);

printf("Return from FunB: %d\n", functionB(var A, var B));
} // End of main

void subroutineA(int A, int *B)44____~

{ Note how int and ptr to int are

declared.

*B = A; // B is a pointer to an int

} // End of subroutineA
short functionB(int A, int B)

{
return(A + B);
} Cygyé%gnygefunctionB 4

Arrays and Structures (1)

#define ARRAY LEN 32 < This is called a “define”. Used
- to parameterize constants.

#include <stdio.h>

typedef struct
{

int arrl [ARRAY LEN]; " h

char string[ARRAY LEN]; ¥~ Here we de met, e structure
} MY STRUCT; - MY_STRUCT. It’s laid out in

- memory as 32 ints (4 bytes each)
void subroutineA(MY STRUCT *); plus 32 bytes arranged as a string.

We'll be passing the address of
this structure to the subroutine.

C By Example 5

Arrays and Structures (2)

int main(int argc, char *argv[])

{ _ _ | Declare an instance of the
int index; structure.
MY STRUCT my struct; <

for (index = 6; index < ARRAY LEN; index++)

{ L) - - -
my struct.arrl[index] = index; Here we’re fillling in the structure ‘
my struct.string[index] = (char)index;
} \
P he str r reference.
subroutineA(&my struct) ; ass the structure by reference

printf("Return of SubA: %d %c\n",
my struct.arrl[0], my struct.string[0]);

} // End of main
) i *
\{IOld subroutineA(MY STRUCT *xx) Note the use of “->” to reference
xx->arrl[0] - 17; < the structure.
xx->string[0] = (char)33;
} // End of subroutineA

What is printed out by this program?

C By Example 6

Pointers

#include <stdio.h>
aand b areints. pisa

int main(int argc, char *argv[]) - pointer to an int.
{ <+

int a, b;

int *p;

a=>b=717;

p = &a; // p points to a

printf("p = %d\n", *p); // 7 is printed

*p = 3;

printf("a = %d\n", a); // 3 is printed

p = &b;

printf("b = %d\n", b);
P = &a;

printf("Input an integer
scanf("%d", p)

// 11 is printed

");

// End of Main

C By Example 7

Library Functions (1)

These pages show include files and the library
function prototypes that are contained in them.

#include <ctype.h>

int isalnum(int c); // returns TRUE if char is alpha or numeric
int isspace(int c); // returns TRUE if char is white space

int tolower (int c); // returns the conversion of c to lower case
#include <math.h>

double cos(double Xx);
double exp(double x);

#include <stddef.h>
#typedef unsigned size t;
#define NULL ((void *) 0)
#define offsetof (s_type, m) \
((size_t) &(((s_type *) 0) ->m))

#include <stdio.h>
#define EOF (-1) // End of File
#define NULL 0

C By Example 8

Library Functions (2)

#include <stdlib.h>

int atoi(const char *s);

int rand (void) ;

void *malloc(size t size); // Allocates "size" bytes of memory

#include <string.h>
void *memcpy(void *to, void *from, size t n);
char *strcat(char *sl, char *s2); // Concatenates

size t strlen(char *s);

C By Example 9

Compilation And Debugging

-g says prepare for debugging. —

Babbage gcc —g prog4.c —o prog4< 0 is the name of the executable.
babbage% gdb prog4 |

(gdb) 1 | says list lines of the program

(gdb) b 24 — . : .

(gdb) r b says set a breakpomt (at line 24 in this case)
(gdb) p index r means run the program.

(gdb) s . .

(gdb) ¢ p says to print a variable.

(gdb) p my struct <«
$4 = {arrl = {O, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, s == single step
26, 27, 28, 29, 30, 313, c == continue to next
string = "\000\001\002\003\004\005\006\a\b\t\n breakpoint.

\013\£f\r\016\017\020\021\022\023\024
\025\026\027\030\031\032\e\034
\035\036\037"}

(gdb) g
babbage %

g == quit

C By Example 10

Shell Commands

babbage% vi make all ‘___,,—cf"——

babbage% chmod 700 make all®——

babbage% ls -1 make_ all

gcc
gcc
gcc
gcc
gcc
gcc

-g progl.
-g prog2.
-g prog3.
-g prog4.
-g progs.
-g progé6.

babbage% mkdi

babbage%

babbage% echo

babbage%

1 jbreeche users
babbage% more make all

-o progl
-0 prog2
prog3
-o prog4
-0 progb
-0 progb

00 0n0anan
|
(o)

r foo

cd foo

"This is a line"

cat bar

This is a line
babbage% rm bar

\

You need an editor — either emacs or vi.

Change privileges

Is = ==

list directory contents

more == print out file, 1 screen at

mkdir == create a directory

> bar

cd == change directory

echo == print a line. In this case “>”
puts that line in a file.

rm == delete afile (rmdir == delete a
directory.)

“man” and “apropos” are my favorites.

C By Example 11

