
CS 502 Output

State Printers and Output Philosophy

Release 4.30 - Revised 6/2016

This document contains essentially two sections. The first is about SchedulerPrinter, a

way to easily view the state of the processes running in your operating system. The

second is about MemoryPrinter, a way to view physical memory and who is using it.

1. State Printing Philosophy

The output generated from running your operating system can be overwhelming. The

amount of data produced is abundant and in an effort to reduce the amount of data you

generate, here are a few guidelines.

The output from your operating system comes in 4 categories, a) Scheduler Output, b)

Memory Output, c) Output from the tests you ran, and d) Error and Trap handling.

The requirements on what you are to hand in varies for each test. See the Student

Manual for a detailed list.

Each of these categories are addressed below.

1.1 Scheduler Output

Attached are two sample outputs of the SchedulerPrinter. One is what is produced by

sample.c. This can be very useful to you because you can look both at the output and

at the code that produced that output. The scheduler has five actions that should be

logged (you may have more); Dispatch, Create, Done (or Terminate), Ready, and

Suspend (in multiple flavors).

You should highlight interesting things in your output, for example: if a process is

suspended and resumed, or a change in priority.

1.2 Memory Output

You want to print out significant memory events that show the work you have done in

the OS. This means, for instance, you would want to show the first few memory

operations - how you have associated a logical page with a physical page. A very

significant memory event is when you have used up all of physical memory and must

now steal a page. Showing how you have removed the data from a frame and then

associated that frame with a new process/logical page is an EXTREMELY

IMPORTANT thing to show. Many people simply log every time there is a change in

a frame.

1.3 Test Output

The results from all test programs - that produced by "printf() statements in the tests

themselves - should be handed in, in their entirety. For the tests provided to you, there

is not a lot of output produced.

1.4 Error and Trap Handling

This section includes interrupt, fault, and SVC handling.

As you will see, this can be a lengthy amount of output. You should hand in enough

output to demonstrate the proper handling of these errors and traps.

Consider using a similar scheme as the scheduler to show some error and trap

handling, then disable it after some threshold has been exceeded. Whatever you set as

a threshold, be sure it is high enough to show several instances of all the actions that

might occur; in general, if you set the threshold so all of test1 is displayed, you'll be

OK.

2. Using The SchedulerPrinter

2.1 Introduction

This tool is designed to save you time by giving a simple way to print out nicely

formatted information about the state of the processes on your system. It should,

perhaps, more aptly be named "process_printer". To use the printer, you need to:

1. Gather together all the information relating to the current state of all the

processes in the simulation.

2. Fill in the data structure that will be used to communicate this information to

the SchedulerPrinter.

3. Call SPPrintLine which has the effect of dumping out all the data you've just

defined in the data structure.

The scheduler Printer code should be atomic. When you make the call

to SPPrintLine(&SPInput), you cause that code to build the output on its stack and then print ALL of the data at one

time.

2.2 SP Data Structure

This is the data structure used to convey information from your Operating System to

the code that will print out the state of your processes. It is defined in syscalls.h.

typedef struct {

 // What action is performed

 char TargetAction[SP_LENGTH_OF_ACTION+2];

 // Pid of process making request

 INT16 CurrentlyRunningPID;

 // Action is being done on what PID

 INT16 TargetPID;

 // At least 1 - duplicates CurrentlyRunningPID

 INT16 NumberOfRunningProcesses;

 INT16 RunningProcessPIDs[SP_MAX_NUMBER_OF_PIDS];

 // Number of Ready To Run Processes

 INT16 NumberOfReadyProcesses;

 // PIDs of those Ready To Run

 INT16 ReadyProcessPIDs[SP_MAX_NUMBER_OF_PIDS];

 INT16 NumberOfProcSuspendedProcesses;

 INT16 ProcSuspendedProcessPIDs[SP_MAX_NUMBER_OF_PIDS];

 INT16 NumberOfMessageSuspendedProcesses;

 INT16 MessageSuspendedProcessPIDs[SP_MAX_NUMBER_OF_PIDS];

 INT16 NumberOfTimerSuspendedProcesses;

 INT16 TimerSuspendedProcessPIDs[SP_MAX_NUMBER_OF_PIDS];

 INT16 NumberOfDiskSuspendedProcesses;

 INT16 DiskSuspendedProcessPIDs[SP_MAX_NUMBER_OF_PIDS];

 INT16 NumberOfTerminatedProcesses;

 INT16 TerminatedProcessPIDs[SP_MAX_NUMBER_OF_PIDS];

} SP_INPUT_DATA;

Here is an explanation of the fields in the SP_INPUT_DATA data structure.

TargetAction - This is a string made up of at most SP_LENGTH_OF_ACTION

characters. You can use any string you want. The PURPOSE of this field is to define

what is happening at any given point. For instance, it's very useful to be able to

describe the state of your system when you do a process creation, a schedule, a

suspend, etc.

CurrentlyRunningPID - The process ID of the process that's generating the Scheduler

Printer request.

TargetPID - The PID of the process that's being effected. For instance, if you are

creating a new process, then "CurrentlyRunningPID" is creating a new process

"TargetPID".

NumberOfRunningProcesses - Ignored until Multiprocessor hardware is implemented.

RunningProcessPIDs - Ignored until Multiprocessor hardware is implemented.

NumberOfReadyProcesses - The number of processes on the Ready Queue

ReadyProcessPIDs - The list of PIDs of processes on the Ready Queue

NumberOfProcSuspendedProcesses - The number of processes that have been

suspended as a result of the SUSPEND_PROCESS system call. Note that this is an

EXCELLENT way to be able to show that your OS can implement this system call.

ProcSuspendedProcessPIDs - The list of PIDs of processes that have been suspended

as a result of the SUSPEND_PROCESS system call.

NumberOfMessageSuspendedProcesses - The number of processes that are waiting

for a message. This could be processes that have executed a RECEIVE_MESSAGE

system call.

MessageSuspendedProcessPIDs - The list of PIDs of processes that are waiting for a

message.

NumberOfTimerSuspendedProcesses - The number of processes on the Timer

Queue. These are processes that have executed a SLEEP system call and are waiting

for the timer to interrupt.

TimerSuspendedProcessPIDs - The list of PIDs of processes on the Timer Queue.

NumberOfDiskSuspendedProcesses - The number of processes on the Disk

Queues. These are processes that have executed a DISK_READ or DISK_WRITE

and are waiting for the disk to interrupt.

DiskSuspendedProcessPIDs - The list of PIDs of processes on the Disk Queues.

NumberOfTerminatedProcesses - This field is currently not used by the Print

Manager.

TerminatedProcessPIDs - This field is currently not used by the Print Manager.

Format: SPPrintLine(SP_INPUT_DATA *OutputData);

This routine prints out all the data that has been defined when setting up the output

structure. Here is an example of the output generated when running the sample

code "z502 sample". You can see how the values used in this example are prepared

by looking at sample.c.

 Time Target Action Run State Populations
17614 3 Create 2 READY : 0 1 2

 SUS-PRC: 3 4 5 6

 SUS-TMR: 8 9 10 11 12 13

 SUS-MSG: 16 17

 SUS-DSK: 15

3. An Example of SchedulerPrinter Output

Here is an example of the output from SchedulerPrinter. This is an abbreviated

version of what might be printed out when running “z502 test3”.

 Time Target Action Run State Populations

 65 1 Create 0

 Time Target Action Run State Populations

 102 2 Create 0 READY : 1

 Time Target Action Run State Populations

 139 3 Create 0 READY : 1 2

 Time Target Action Run State Populations

 176 4 Create 0 READY : 1 2 3

 Time Target Action Run State Populations

 213 5 Create 0 READY : 1 2 3 4

 Time Target Action Run State Populations

 236 0 Sleep 0 READY : 1 2 3 4 5

 SUS-TMR: 0

 Time Target Action Run State Populations

 242 1 Dispatch 0 READY : 1 2 3 4 5

 SUS-TMR: 0

 Time Target Action Run State Populations

 290 1 Sleep 1 READY : 2 3 4 5

 SUS-TMR: 1 0

 Time Target Action Run State Populations

 296 2 Dispatch 1 READY : 2 3 4 5

 SUS-TMR: 1 0

 Time Target Action Run State Populations

 344 2 Sleep 2 READY : 3 4 5

 SUS-TMR: 2 1 0

 Time Target Action Run State Populations

 350 3 Dispatch 2 READY : 3 4 5

 SUS-TMR: 2 1 0

4. Using The Memory Printer

4.1 Introduction

This tool is designed to save you time by giving a simple way to print out nicely

formatted information about the state of physical memory on your system. To use the

printer, you repetitively do the following:

1. Gather all information about the physical memory frames in the provided data

structure.

2. Call MPPrintLine which outputs the entire contents of the MP_INPUT_DATA

structure as a single print statement.

The ultimate goal is to have a simple and compact way to display the memory state at

any point in time.

4.2 MP Data Structure

This is the data structure that defines EACH of the frames in the physical memory.

 typedef struct {

 INT16 InUse; // TRUE == in use, FALSE == not in use

 INT16 Pid; // The Process holding this frame

 INT16 LogicalPage; // The logical page in that process

 INT16 State; // The state of the frame.

 } MP_FRAME_DATA;

 And this is the structure that aggregates the information from all the frames in a

single large strucure

 typedef struct {

 MP_FRAME_DATA frames[PHYS_MEM_PGS];

 } MP_INPUT_DATA;

 The information required for each frame is defined as follows:

 InUse: If TRUE, then this frame is in use and the data in the remainder of the

structure is valid. If FALSE, then information about this frame is ignored and the

printout assumes the frame is not used.

 Pid: The process id of that process that has this frame in its page table. In the

case of shared memory where more than one process' page table aims at this frame,

you'll have to pick one. Legal values are 0 - 9; sorry but there's only one digit

available in the printout.

 LogicalPage: This identifies which logical page within the page table of process

PID is associated with this frame. In the output this is called VPN = virtual page

number. Legal values are 0 to (VIRTUAL_MEM_PGS - 1) or as currently

implemented, 0 to 1023.

 State: The current state of this page. Values possible here are:

 Frame is Valid - the physical frame contains real data:

FRAME_VALID

 Frame is Modified - some process has written to it and it is dirty:

FRAME_MODIFIED

 Frame is Referenced - some process has written or read it:

FRAME_REFERENCED

The state you enter is the sum of these possible values. So, if a frame is valid

and has been read, you would enter FRAME_VALID + FRAME_REFERNCED

as the value of its state. Note that these are the same values (and in the same

order) as in the page table.

4.3 Using MPPrintLine

 Format: MPPrintLine(MP_INPUT_DATA *input);

This routine prints out all the data that has been defined when filling in the

MP_INPUT_DATA structure. Here is an example of the output that is printed by

Sample.c

 `

 PHYSICAL MEMORY STATE

 Frame 0000000000111111111122222222223333333333444444444455555555556666

 Frame 0123456789012345678901234567890123456789012345678901234567890123

 PID 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 VPN 0 1

 VPN 0 0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 0

 VPN 1 4 7 0 3 7 0 3 6 9 3 6 9 2 5 9 2 5 8 1 5 8 1 4 7 1 4 7 0 3 7 0

 VPN 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

 VMR 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

