
3/21/2016

1

Advanced Pathfinding

IMGD 4000

With material from: Millington and Funge, Artificial Intelligence for

Games, Morgan Kaufmann 2009 (Chapter 4) and Buckland, Programming

Game AI by Example, Wordware 2005 (Chapter 5, 8).

Finding a Path

• Often seems obvious and

natural in real life

– e.g., Get from point A to B

� go around lake

• For computer controlled

player, may be difficult

– e.g., Going from A to B

goes through enemy base!

• Want to pick “best” path

• Need to do it in real-time

http://www.rocket5studios.com/tutorials/make-a-2d-game-with-

unity3d-using-only-free-tools-beginning-enemy-ai-with-a-pathfinding/

http://www.codeofhonor.com/blog/the-starcraft-path-finding-hack

Finding a Path

• Path – a list of cells, points or
nodes that agent must
traverse to get to from start
to goal
– Some paths are better than

others

� measure of quality

• A* is commonly used
heuristic search
– Complete algorithm in that if

there is path, will find

– Using “distance” as heuristic
measure, then guaranteed
optimal

http://www.cognaxon.com/index.php?page=educational

A* Pathfinding Search

• Covered in detail in IMGD 3000

http://web.cs.wpi.edu/~imgd4000/d16/slides/imgd3000-astar.pdf

• Basic A* is a minimal requirement for solo
project

– You may use any reference code as a guide, but
not copy and paste (cf. academic honesty policies)

• An advanced pathfinding feature will be
optional, but required for an A

– This slide deck

4

Practical Path Planning

• Sometimes, basic A* is not enough

• Also, often need:
– Navigation graphs

• Points of visibility (pov) – lines connecting visible nodes

• Navigation mesh (navmesh) – models traversable areas of
virtual map

– Path smoothing

– Compute-time optimizations

– Hierarchical pathfinding

– Special case methods

• Some of these count as optional requirement

5

Tile-Based

Navigation Graphs
• Common, especially if environment

already designed in squares or

hexagons

• Node center of cell; edges to

adjacent cells

• Each cell already labeled with

material (mud, river, etc.)

• Downside:

– Can burden CPU and memory

• e.g., Modest 100x100 cell map has

10,000 nodes and 78,000 edges!

– Especially if multiple AI’s calling at

same time

Most of slide deck is survey about how

to do better...

6

http://forum.cocos2d-objc.org/t/tilemapkit-complete-tiled-tmx-tilemap-support-including-hex-staggered-iso/17313

http://opinionatedgamers.com/2011/12/07/review-of-kingdom-builder/

3/21/2016

2

Outline

• Introduction (done)

• Navigation Graphs (next)

• Navigation Mesh

• Pathfinding Tuning

• Pathfinding in UE4

8

Point of Visibility (POV) Navigation Graph

• Place graph nodes (usually by hand) at important
points in environment

• Such that each node has line of sight to at least one
other node

9

POV Navigation

• Find closest visible node (a) to current location
• Find closest visible node (b) to target location
• Search for least cost path from (a) to (b), e.g. A*
• Move to (a)
• Follow path to (b)
• Move to target location

DEMO (COARSE)

Note, some “backtracking”

10

Blind Spots in POV

• No POV point is visible from red spots!

• Easy to fix manually in small graphs

• A problem in larger graphs

DEMO (COARSE)

POV Navigation

• Advantage

– Obvious how to build and expand

• Disadvantages

– Can have “blind spots”

– Can have “jerky” (backtracking) paths

– Can take a lot of developer time, especially if design is rapidly evolving

– Problematic for random or user generated maps

• Solutions

1. Automatically generate POV graphs

2. Make finer grained graphs

3. Path smoothing

11 12

Automatic POV by Expanded Geometry

(A) Expand geometry

– By amount proportional

to bounding radius of

moving agents

(B) Connect all vertices

(C) Prune non-line of sight

points

� Avoids objects hitting

edges when pathing

Note: works best if bounding

radius similar for all units

3/21/2016

3

13

Finely Grained Graphs

• Upside? Improves blind spots and path smoothness

• Downside? Back to similar performance issues as tiled graphs

• Upside? Can often generate automatically using “flood fill” (next slide)

Flood Fill to Produce Finely Grained Graph

• Place “seed” in graph

• Expand outward
– e.g., 8 directions

– Making sure nodes
and edges passable by
bounding radius

• Continue until covered

� Produces a finely
grained graph

• Note, same algorithm
used by “paint”
programs to flood fill
color

14

15

Path Finding in Finely Grained Graph

• Use A* or Dijkstra depending on whether looking for specific or
multiple general targets
– e.g., Find exit? A* typically faster than Dijkstra’s since latter is

exhaustive

– e.g., Find one of many rocket launchers? A* would need to be re-
run for each, then chose minimum.

16

Problem: Kinky Paths

Solution? Path smoothing.

- Simple fix to “penalize” change in direction

- Others work better (next)

Problem: Path chosen

“kinky”, not natural

17

Simple Smoothing Algorithm (1 of 2)

• Check for “passability” between adjacent edges

• Also known as “ray-cast” since if can cast a ray between A
and C then waypoint B is not needed

Simple Smoothing Algorithm (2 of 2)

1. Grab source E1

2. Grab destination E2

3. If agent can move between,

a) Assign destination E1 to
destination E2

b) Remove E2

c) Advance E2

4. If agent cannot move

a) Assign E2 to E1

b) Advance E2

5. Repeat until destination E1
or destination E2 is endpoint

E1 E2

E1

E1 E2 E1

3/21/2016

4

19

Path Smoothing Example

DEMO (SMOOTH)

E1

Outline

• Introduction (done)

• Navigation Graphs (done)

• Navigation Mesh (next)

• Pathfinding Tuning

• Pathfinding in UE4

Navigation Mesh (NavMesh)

• Partition open space into
network of convex polygons

– Why convex? � guaranteed
path from any point to any
point inside

• Instead of network of
points, have network of
polygons

• Can be automatically
generated from arbitrary
polygons

• Becoming very popular
(e.g., UE4)

21

NavMesh Example (1 of 3)

(Part of Stormwind City in World of WarCraft)

Waypoint

NavMesh• NavMesh has more

information (i.e., can

walk anywhere in

polygon)

http://www.ai-blog.net/archives/000152.html

NavMesh Example (2 of 3)

http://www.ai-blog.net/archives/000152.html

(The town of Halaa in World of WarCraft, seen

from above (slightly modified))

Waypoint

NavMesh• Waypoint needs lots of

points

• NavMesh needs fewer

polygons to cover same

area

NavMesh Example (3 of 3)

http://www.ai-blog.net/archives/000152.html

(The town of Halaa in World of WarCraft, seen

from above (slightly modified))

Waypoint

NavMesh• Plus smoothing, else

zigzag

• Note, smoothing for

navmesh works, too

3/21/2016

5

NavMesh Performance

• But isn't it slower to do
pathfinding on NavMesh?

• No. NavMesh is also a
graph, just like waypoints.

• Difference? Navmesh has
polygon at each graph
node

• A* runs on any graph
– Square grid

– Waypoint

– Navmesh
(Illustration of graph (red) underlying a

navigation mesh)

http://www.ai-blog.net/archives/000152.html

NavMesh with other Paths

• NavMesh can be used

with waypoints

• Use waypoints for

higher-order locations

– E.g.,

• Soldiers need patrol path

• Old man needs fishing

path

• Cover points for hiding

• NavMesh to get there

(Various terrain markers (AI hints) and NavMesh)

http://www.ai-blog.net/archives/000152.html

Outline

• Introduction (done)

• Navigation Graphs (done)

• Navigation Mesh

– Generating a NavMesh (next)

• Pathfinding Tuning

• Pathfinding in UE4

Generating NavMesh

• Can be generated by hand

– e.g., lay out polygons (e.g., squares) to cover

terrain for map

– Takes a few hours for typical FPS map

• Can be generated automatically

– Various algorithm choices

– One example [Leo14]

[Leo14] Timothy Leonard. “Procedural Generation of

Navigation Meshes in Arbitrary 2D Environments”, Open

Journal Systems Game Behavior, Volume 1, Number 1, 2014.

Online: http://computing.derby.ac.uk/ojs/index.php/gb/article/view/13

Generating NavMesh – Walkable Area

• Use collision grid to compute walkable area

– Prepare 2d array, one for each pixel

– Sample each pixel � if collide, then black else white

Base background (just for show) Walkable area (white)

Generating NavMesh – Contour

• Run marching squares

to get contour

– “marching squares” is

graphics algorithm that

generates contours for

2d field

– Parallelizes really well

• Contour points used as

vertices for triangles for

NavMesh
After running marching squares. Purple dots

show contour of walkable area.

3/21/2016

6

Generating NavMesh – Simplified

Contour

• Simplify contour by

removing points along

same horizontal/vertical

line

• Don’t remove all

redundant points to

avoid super-long edges

(can produce odd

navigation) in triangles

– Define max distance

between points
Simplifying contour points, max distance 128

Generating NavMesh – Triangles

• Fit squares � Loop
– Find point not in

mesh

– Create square at
point

– Expand until hits
edge or other
square

– Done when no more
points

• Split squares into
triangles

• Connect triangle to
all other triangles in
neighbor squares

• Now have graph for
pathfinding (e.g., A*)

NavMesh generated using rectangle expansion. Red

lines show neighbors.

Generating NavMesh – Path

• Using mid-points,

path will zig-zag

(see right)

Solution? � Path

smoothing

A. Simple ray-cast

B. Funnel

Path generated using midpoints of triangles

Generating NavMesh – Path

Smoothing by Ray-cast

• Ray-cast as for

“simple”

smoothing

shown earlier

(see right)

Path generated using ray-cast to remove

unnecessary points

Generating Navmesh – Path

Smoothing by Funnel

• Smooth path from start to

goal

• Move edges along triangle

• If can ray-cast, then not

path “corner” so continue

• If cannot, then found

“corner”

Outline

• Introduction (done)

• Navigation Graphs (done)

• Navigation Mesh (done)

• Pathfinding Tuning (next)

• Pathfinding in UE4

3/21/2016

7

Possible Pathfinding Load Spikes

• Could be many AI agents, all moving to different

destinations

• Each queries and computes independent paths

• Can lead to spikes in processing time

� Game loop can’t keep up!

• Solution? Reduce CPU load by:

1) Pre-compute paths

2) Hierarchical pathfinding

3) Grouping

4) Time slice (Talk about each briefly, next)

38

Reduce CPU Overhead – Precompute

Shortest path table

(next node)
Path cost table

If static paths, pre-generate

paths and costs

(e.g., using Djikstra’s)

Time/space tradeoff
e.g., path A to D?

39

Reduce CPU Overhead – Hierarchical

• Typically two levels, but can be more

• First plan in high-level, then refine in low-level

• E.g., Navigate (by car) Atlanta to Richmond
– States Georgia and Virginia

– State navigation: Georgia � South Carolina � North Carolina � Virginia

– Fine grained pathfinding within state

Reduce CPU Overhead – Grouping

• In many cases, individuals do not need to

independently plan path

– E.g., military has leader

• So, only have leader plan path

– Normal A*

• Other units then follow leader

– Using steering behaviors (later slide deck)

(Sketch of how next)

Reduce CPU Overhead – Time Slice (1 of 3)

• Evenly divide fixed CPU pathfinding budget

between all current callers

– Must be able to divide up searches over multiple

steps

• Considerable work required!

– But can be worth it since makes pathfinding load

constant

41

Reduce CPU Overhead – Time Slice (2 of 3)

• Pathfinding generalized

– Grab next node from priority queue

– Add node to shortest paths tree

– Test to see if target

– If not target, examine adjacent nodes, placing in
tree as needed

• Call above a “cycle”

• Create generalized class so can call one cycle

(next slide)

42

3/21/2016

8

Generalized Search Class
enum SearchType {Astar, Dijkstra};

enum SearchResult {found, not_found, incomplete};

class GraphSearch {

private:

SearchType search_type;

Position target;

public:

GraphSearch(SearchType type, Position target);

// Go through one search cycle. Indicate if found.

virtual SearchResult cycleOnce()=0;

virtual double getCost() const=0;

// Return list if edges (path) to target.

virtual std::list<PathEdge> getPath() const=0;

};

• Derive specific

search classes

(A*, Dijkstra)

• Each game loop,

PathManager

calls cycleOnce()

• (If enough time,

could call more

than once)

Reduce CPU Overhead – Time Slice (2 of 3)

• Create PathPlanner for Obj

• Create PathManager to allocate cycles

• PathPlanner registers with PathManager

– Gets instance of path

• Each tick, PathManager distributes cycles among
all

• When path complete, send message (event) to
PathPlanner, which notifies Object

• Objects to use for pathing

44
(See example next slide)

Time Slice Example

• Object requests path to
target

• PathPlanner
– Provides closest node

– Creates search (A*, also
could be Djikstra)

– Registers with PathManager

• PathManager
– Allocates cycles among all

searches

– When done, returns path (or
path not found)

• PathPlanner
– Notifies Object

– Object requests path

45

Reduce CPU Overhead – Time Slice (3 of 3)

• Note “time slicing” implies that caller may have
to wait for answer
– Wait time proportional to size of graph (number of

cycles needed) and number of other Objects pathing

• What should Object do while waiting for path?
– Stand still � but often looks bad (e.g., player expects

unit to move)

– So, start moving, preferably in “general direction” of
target

• “Seek” as behavior (see later slide deck)

• “Wander” as behavior (ditto)

– When path returns, “smooth” to get to target
(example next slide)

46

Time Slicing needs Smoothing

• Object registers pathfinding to target

• Starts seeking towards target

• When path returns, Object will backtrack. Bad!

• Solution? � Simple smoothing described earlier to remove

47

Without smoothing Smoothed

DEMO (TIME-SLICING)

Time Slicing with Seek Fail

• When waiting for path,
head “wrong” direction
– May even hit walls!

– Looks stoopid

• Alternative can be to
return path to node closer
to Object
– Modify A* to return answer

after X cycles/depth

– Start moving along that path

– Request rest of path

• When complete path
returned, adjust

Seek heads in obvious (to

player) wrong direction

Seek direction

Needed direction

48

3/21/2016

9

49

Getting Out of Stuck Situations

DEMO (STUCK)

Object pathing to C
Reaches A, removes and B next

Other Objects “push” Object back Object still heads to B but hits wall

50

Getting Out of Stuck Situations

• Calculate distance to Object’s next waypoint each
update step

• If this distance remains about same or
consistently increases

�Probably stuck

�Replan

• Alternatively – estimate arrival time at next
waypoint

– If takes longer, probably stuck

� Replan

51

Advanced Pathfinding Summary

• Not necessar to use all techniques in one

game

• Only use whatever game demands and no

more

• An advanced pathfinding feature is an

optional project requirement

• For reference C++ code see
http://samples.jbpub.com/9781556220784/Buckland_SourceCode.zip
(Chapter 8 folder)

Outline

• Introduction (done)

• Navigation Graphs (done)

• Navigation Mesh (done)

• Pathfinding Tuning (done)

• Pathfinding in UE4 (next)

Navigation in UE4

• Has NavMesh

– Auto generated initially

– Tweaked by hand

• NavLinkProxy to allow “jumping”

• Auto re-generates when static objects move

(More in upcoming slides)

53

UE4 NavMesh

• Modes Panel �

Create � Volumes

• Translate/scale to

encapsulate

walkable area

• Press “P” to view

– Green shows mesh

3/21/2016

10

Automatic Update as Design Level

Move static

mesh

(bridge)

NavMesh

automatic

update

55

Automatic Update at Runtime

• Edit � Project Settings �Navigation Settings

� Rebuild at Runtime

Unreal Engine 4 Tutorial - NavMesh Rebuild Realtime
https://www.youtube.com/watch?v=UpbaCHTcNPA

56

NavLinkProxy

• Tell Pawns where can temporarily leave

NavMesh (e.g., to jump off edges)

57

https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/NavMesh/1_2/index.html

Use NavMesh with Character

• Setup AI Character and
AI Controller Blueprint

• Place character in
scene

• “Move to location”
– E.g., waypoints

• “Move to actor”
– E.g., follow or attach

character

Unreal Engine 4 Tutorial - Basic AI Navigation

https://www.youtube.com/watch?v=-KDazrBx6IY

58

