
4/10/2017

1

Networking for Games

IMGD 4000

Introduction (1 of 2)
• Games are increasingly networked

– Multi-player, connecting PCs and Game consoles (e.g.,
Counter-strike, Halo)

– Single-player, pulling and pushing content to Web
service (e.g., Kongregate)

• Emerging services play game in “cloud”, sending
rendered game down as video
– (However, will not talk about this approach much)

• All require an understanding of networking
(conversant), with enough knowledge to begin to
design and build network game (develop)

Slide 2

Introduction (2 of 2)
• For now, “networking” mostly means “Internet

networking”, so that will be our reference
• Other networking aspects that can be relevant for

games includes:
– Ad Hoc / Mesh networking
– Short-range wireless (e.g., Bluetooth)
– Network security (including cheating)
– Mobile application (game) development (often networked)

• These, and other topics available in-depth from your
friendly, neighborhood WPI course

(next slide)

Slide 3

Networking at WPI
• General, core networks:

CS 3516 – Computer Networks
– Broad view of computer networks,

top-down
CS 4516 – Advanced Computer
Networks
– In-depth computer networks, more

“under the hood”
• Networks applied to specific

domains
CS 4513 – Distributed Systems
CS 4518 – Mobile and Ubiquitous
Computing
CS 4241 – Webware: Computational
Technology for Network Information
Systems
CS 4404 – Tools and Techniques in
Computer Network Security

• Also grad courses
CS 513 – Introduction to Local and
Wide Area Networks
CS 528 – Mobile and Ubiquitous
Computing
CS 529 – Multimedia Networking
CS 530 – High-Performance
Networks
CS 533 – Modeling and Performance
Evaluation of Network and
Computer Systems
CS 558 – Computer Network
Security
CS 577 – Advanced Computer and
Communications Networks

This deck  core networking
applied to computer games.

Slide 4

The Internet – Postal Service Analogy

• Lookup address

Slide 5

The Internet – Postal Service Analogy

• Lookup address

DNS lookup
Make packet

from data
Send packet Transmit (e.g.,

WiFi) to router

Route packet
(actually, hop

by hop)

Transmit (e.g.,
fiber) across

continent

Check
credentials

(e.g., firewall)

Transmit (e.g.,
Ethernet)

Deliver packetExtract data
from packet Slide 6

4/10/2017

2

Outline

• Introduction (done)
• Basic Internet Architecture (next)
• Loss and Latency
• Latency Compensation Techniques
• Client-Server Synchronization

Slide 7

The Internet

• Many design decisions and end-user experiences
for multi-player networked games derive from
nature of Internet
– “Best Effort” service
– Internet naming and addressing
– Transport protocols (two choices: TCP or UDP)

• Layered
Applications (Half-Life, WoW, Mario…)

Services (DNS, HTTP, Overlay…)
Transport (TCP,UDP)
Network (IP – Internet Protocol)

Slide 8

Internet Provides “Best Effort” Service

• Few guarantees on timeliness
– Can take milliseconds, 100’s of milliseconds, or even seconds to

deliver packet
• Few guarantees on arrival certainty

– Sometimes packet doesn’t arrive (loss)
– Or arrives out of order (e.g., packet #3 arrives before packet #2)
– Or can arrive twice (duplicates, uncommon but possible)

• Time to reach destination called latency
– Lag typically latency + end-host (server and client) time

• Often, players have hard time distinguishing

(More on loss and latency later)

Slide 9

Endpoints and Addressing
• IPv4 numerical 32-bit (4 byte) values

– Dotted quad form: 192.168.1.5 or 130.215.36.142
– In theory, 232 (about 4 billion) addresses, but practically fewer

since allocated in blocks
• Each Internet host has IP address

– Client running game client
– Server running game host

• Some have 2 IP addresses
– Client with wireless and wired network (multi-homed)
– Router with multiple connections

IPv6 has 2128

addresses (enough for 100
addresses for each atom on the

earth surface), but not
widely deployed in

U.S.

• Packet has: source, destination
• Payload is upper layer
(transport, application)
• Network worries about arrival

• IP address related to,
but not same as
domain name (later)

“Flow” determined by port, too
 Transport layer (next)

Slide 10

Transmission Control Protocol (TCP)
• Many applications sensitive to loss, not time

– e.g., File transfer (.exe), email
– Need reliable, ordered transfer of bytes

• Frames data  send as IP packets
• Provides connection
• Uses window for outstanding packets

– Provides flow control and congestion control
– Window grows with success, shrinks with loss
– Lost packets retransmitted

Slide 11

TCP TCP

User Datagram Protocol (UDP)

• Some applications sensitive to time
– e.g., Voice over IP (VoIP)

• Unreliable, connectionless
• No flow control (sender can go faster than receiver)
• No congestion control (sender can go faster than network)

– Note: IP does ensure there are no bit errors (via Cyclic
Redundancy Check, CRC)

• Lightweight, but application must handle loss!

Slide 12

UDP UDP

4/10/2017

3

Transport Protocol Summary

TCP
• Guaranteed arrival by

retransmissions
• In-order delivery
• Flow/congestion control

UDP
• No arrival/order guarantees
• No flow/congestion control
• Lightweight

Slide 13

Which transport protocol to use for your game?

Transport Protocol Summary

TCP
• Guaranteed arrival by

retransmissions
• In-order delivery
• Flow/congestion control

UDP
• No arrival/order guarantees
• No flow/congestion control
• Lightweight

Only use UDP if you know game
sensitive to small amounts of latency

How small? About 100 milliseconds

Remember, your code must be robust to
loss!

Not all games are sensitive to latency!
Use TCP
RTS, MMO

Generally, easier to use TCP for games!
 Handles a lot of important bookwork

Which transport protocol to use for your game?

Unicast, Multicast, Broadcast

(a) Unicast, one send and one receive
– Wastes capacity when path shared

(c) Broadcast, one send and all receive
– Can work for LAN, but cannot do on Internet
– Can waste capacity when most don’t need

(b) Multicast, one send and only subscribed receive
– Current Internet does not support
– Multicast can work for overlay networks (separate topic)

Note, UE4 provides a
multicast networking
feature. However,
this is not true IP
multicast, but rather
replicated unicast to
all clients.

Slide 15

Connectivity (prune)
• Often edge most important

– Game developer does not see internals
• But some aspects important for understanding

network performance
– Hierarchy
– Routing
– Link-layer

Independent choice for
packet route based solely
on destination address
- Not based on sender
- Not based on QoS

Slide 16

Connectivity – Hierarchy (prune)

Slide 17

• Routers designed for speed
– Get packet to outgoing link asap

• Value + Prefix size
– 128.80.0.0/16 all

w/128.80 go to R1
– R1 forwards more precisely to

subnet
– WPI has 130.215 with

• 130.215.28 CS subnet
• 130.215.36 CCC subnet (CCC1,

…)
• 130.215.16 ECE subnet…

Connectivity – Routing (prune)
• Routers use dynamic routing

– Discover topology
– Pick “best” routes (want tree)

• Typically shortest path (# hops,
latency…)

Note: Local (internal to
ISP) routing protocol
different than among ISPs
(ASes). The “cost”
between ASes different
than simply distance.

Slide 18

4/10/2017

4

Connectivity – Link Layer (prune)
• Link layer conveys packets across

LAN
– Medium Access Control (MAC)

• IP address mapped to data link
layer
– Ethernet (IEEE 802.3), Wi-Fi

(IEEE 802.11)
– MAC address 48-bit. E.g.,
00:0F:1F:81:41:6C

– MAC address specified by
vendor on card

• IP to MAC assignment:
– Fixed (e.g., register computer

with netops)
– Dynamic (assigned when boot)

Slide 19

Typically, network game won’t care about
link layer since usually fast. But ….
wireless, particularly wide-area wireless
(e.g, 4G) can have 10s or 100s and even
1000s of milliseconds of latency!

Miscellaneous
• Time-to-Live

– Prevent loops (routers may have different shortest-path trees)
– 8-bit value (0 to 255)
– Decrement by one each hop
– If zero, then discard

• Maximum Transmission Unit (MTU)
– IP packet could be 64 KBytes
– In practice, bound by Ethernet (prevalent standard)
 1500 byte payload, so 1460 bytes for application payload
– If larger, then fragment into multiple IP packets

• Re-assemble at end
• If one lost, all lost!

• First Hop
– Only know egress (e.g., first router)

ifconfig (Linux)
ipconfig /all (Windows)

For network game using UDP, keep
data payloads smaller than MTU!

Slide 20

Address Management
Mini-Outline

• Network Address Translation
• Dynamic Host Configuration Protocol
• Dynamic Name Service

Slide 21

Network Address Translation (NAT) (1 of 2)

• Used at boundary of ISP
– Where internal private addresses use external

publicly routable address

• Good if internal address not allocated
– Ex: private networks

• 10/8, 172.16/12, 192.168/16

• Also, may help keep internal network secure
(but not sufficient)

Slide 22

Network Address Translation (NAT) (2 of 2)
• Source hosts use private IP
• Forward to NAT router
• Swap private source address with public address (could be range)

– 1-to-1 mapping between source hosts and public addresses

• Send to ISP for Internet routing
• Remember process so can do reverse on return

Slide 23

Network Address Port Translation (NAPT)
(1 of 2)

• Have only 1 public address for multiple
private addresses

Slide 24

Public Private
128.80.6.200:200 192.168.0.12:100
128.80.6.200:300 192.168.0.13:100
128.80.6.200:325 192.168.0.13:200

4/10/2017

5

Network Address Port Translation (NAPT)
(2 of 2)

• Good:
– Easy to renumber (one number)
– Only need one public address

• Bad: Breaks transparency (need to add functionality for each
new protocol)

• Hard for outside (public) hosts to access inside (private) hosts
– Need to pre-open NATP ports for private servers

• Even harder for multiple servers
– e.g., what if two different Unreal Tournament servers inside?
– Need non-standard ports that clients know about

• Typically, local server register w/master server
– Gives IP address + Port where server is For network game, cannot

rely upon reaching server
behind NAT!

Slide 25

Dynamic Host Configuration Protocol
(DHCP) (prune)

• Hosts need: IP address, subnet mask, IP
address of at least one router
– Use DHCP to get from LAN device

• Typical with WLAN router, cable modem, …

• Client broadcasts DHCP discovery to port 67
– Identifies its MAC address (e.g.,

00:0a:95:9d:68:16)
• DHCP server responds w/IP + Mask + Router IP
• Client confirms, may request additional

information (could be more than one DHCP
server)

• Server ACKs For network game, host
may not have same IP

address each time!

Slide 26

Domain Name System

• Map text names to IP address
– Ex: www.wpi.edu

mapped to
130.215.36.26

– Names more human-
readable

• Minimal <name>.tld (top-
level-domain)
– tld: .com, .gov, .edu
– tld: .au, .fr, .uk

• Hierarchy
– Distributed name servers
– Know first one, it knows

upper level
– Local responses cached

• Local DNS, and at host
nslookup, dig, host

Initial latency may be high for
first query (then cached by host)

Slide 27

Outline

• Introduction (done)
• Basic Internet Architecture (done)
• Loss and Latency (next)
• Latency Compensation Techniques
• Client-Server Synchronization

Slide 28

Loss and Latency
• Characteristics most identified with IP networks

– Note, in other cases capacity, but not usually for network games
• Loss – packet does not arrive

– Usually, fraction #recv/#sent, p  [0:1]
– Note, often assumed independent but can be bursty (several lost in

row)
• Latency – time to get from source to destination

– Round trip time (RTT) often important since server response to game
action

– Often assumed (2 x latency), but network path can be asymmetric
– Also jitter (or latency jitter) variation in latency (not discussed more here)

• How much does each matter? (later)
• Right now, sources for each

Slide 29

Sources of Loss?

4/10/2017

6

Sources of Loss
• Note, here we are considering only IP packet loss

– Above IP, TCP will retransmit lost packets
– Below IP, data link often retransmits or does repair (forward error correction)

• IP packet loss predominantly from congestion
– Causes queue overflow (incoming packets dropped)

• Bit errors
– More common on wireless

• Loss during route change (link/host unavailable)
• Often bursty!

Router

Routing
Table

Packet
queue

Slide 31

Sources of Latency?

Sources of Latency

• Serialization – Time to transmit packet
on link 1 bit at a time

• Propagation – Time for bits to travel
from one host to another

• Queueing delay – Time spent in router
queue waiting to be transmitted

• Typically
– Propagation time fast (about speed of

light)
– Serialization time usually fast for high

capacity links
– Queuing delay can dominate, and

exacerbated by long serialization times

Slide 33

What about Local Latency?

Local Latency

Game Loop
- Get Input
- Update World
- Render World
- Sleep

Measuring Local Latency

• Solder led light on bread
board to mouse

• Film with high-speed
camera
– Casio EX-ZR 200
– 100 frames/second

• When click mouse, count
frames  local latency!

• Zoo lab + game engine
(Angel 2d) ~ 100
millisecond

4/10/2017

7

Latency Compensation
Mini-Outline

• Motivation
• Prediction
• Time delay and Time warp
• Data compression
• Visual tricks
• Cheating

Slide 37

Need for Latency Compensation
• Capacities are growing, but cannot solve all problems
• Still bursty, transient congestion (queues)
• Capacities uneven across all clients

– And often asymmetric in downlink/uplink.

• Wireless Wide Area Networks (WWANs) growing
(low, variable capacities, high latency)

• Propagation delays (~25 msec min across U.S.)

“There is an old network saying: ‘Bandwidth problems can be cured with
money. Latency problems are harder because the speed of light is fixed –
you can’t bribe God.’ ” —David Clark, MIT

Slide 38

http://www.youtube.com/watch?v=Bn1nBR5jOx8

Is It Latency or Do You Just Suck?

http://www.youtube.com/watch?v=r6PwHkhEAkU

Slide 39

http://www.youtube.com/watch?v=Bn1nBR5jOx8

Is It Latency or Do You Just Suck?

http://www.youtube.com/watch?v=r6PwHkhEAkU

Delayed response

“Magic” bullets

Server matters

Slide 40

Latency and Playability (1 of 2)
• Affects player – subjective and objective (below)

But depends
upon type of
game!

Slide 41

Latency and Playability (2 of 2)

Slide 42

4/10/2017

8

Latency and Player Action –
Introduction

• Real-time games sensitive to lag
– Even 10s of milliseconds of impacts player

performance and quality of experience (QoE)

• Mitigate with compensation (e.g., time
warp, player prediction, dead reckoning …)
– But how effective?
– And when needed (what player actions)?

• Need research to better understand effects
of delay on games

43

Latency and Player Action –
Introduction

• Real-time games sensitive to lag
– Even 10s of milliseconds of impacts player

performance and quality of experience (QoE)

• Mitigate with compensation (e.g., time
warp, player prediction, dead reckoning …)
– But how effective?
– And when needed (what player actions)?

• Need research to better understand effects
of delay on games!

44

Effect of
delay on
games?

Research in Games and Delay

45

Effect of
delay on
games?

Research in Games and Delay

46

UT

Quake

Warcraft EverQuest

Research

Game Genres

Effect of
delay on
games?

[Amin, 2013]

[Armitage, 2003]

[Chen, 2006]

[Claypool, 2005]

[Beigbeder, 2004]

Research in Games and Delay

47

UT

Quake

Warcraft EverQuest

Target
Selection

[Fitts’ Law]

Moving
Target

Selection

Research

Target
Selection
w/Delay

Game Genres

Input Types

Research

Effect of
delay on
games?

[Hajri, 2011]

[MacKenzie, 1992]

[Raeen, 2011]

[Hoffman, 2012]

[Brady, 2015]

Why Moving Target Selection?

48

[Call of Duty, Activision, 2003]
[Duck Hunt, Nintendo, 1984]

[League of Legends, Riot Games, 2009]

4/10/2017

9

Puck Hunt
The Game of Moving Target Selection

• Survey
• Play game
• About 30 minutes

• Sign up at:
https://tinyurl.com/puckhunt

What is Network Latency for Games?

Internet
Game
client

Game
server

• Latency - time to get from source to destination
– There and back (round-trip time)

Slide 50

Basic Client-Server Game Architecture
• “Dumb” client
• Server keeps all state
• Validates all moves
• Client only updates when

server says “ok”

Algorithm
• Sample user input
• Pack up data and send to server
• Receive updates from server and

unpack
• Determine visible objects and game

state
• Render scene
• Repeat

Time

User
Input

Render
Input

Process
and

Validate
Input

Message:
User Input

Message:
Ok User Input

Latency affects
responsiveness

Slide 51

Latency Example (1 of 2)

Player is pressing left Player is pressing up

Running back goes out of bounds
Slide 52

Latency Example (2 of 2)

Player is pressing “pass” Pass starts rendering

Interception
Slide 53

Outline

• Introduction (done)
• Basic Internet Architecture (done)
• Loss and Latency (done)
• Latency Compensation Techniques (next)
• Examples – Dragonfly and UE4

Slide 54

4/10/2017

10

Compensating for Latency –
Prediction

• Broadly, two kinds of latency compensation:
– Player prediction
– Opponent prediction (often called “dead

reckoning” but that name does little to help
remember)

Slide 55

Compensating for Latency –
Player Prediction

Prediction Algorithm
• Sample user input

• Pack up data and send to
server

• Determine visible objects and
game state

• Render scene

• Receive updates from server
and unpack

• Fix up any discrepancies

• Repeat
Time

User
Input

Render
Input

Process
and

Validate
Input

Message:
User Input

Message:
Ok with UpdateFix

Up

Potentially, tremendous benefit. Render as if local, no latency.
But, note, “fix up” step additional. Needed since
server has master copy.

Slide 56

Example of State Inconsistency
• Predicted state differs from actual state

Slide 57

Prediction Tradeoffs

• Tension between responsiveness (latency
compensation) and consistency

More responsive,
Less consistent

Less responsive,
More consistent

Client uses prediction Client waits for server ok

Slide 58

Compensating for Latency –
Opponent Prediction

• Opponent sends position, velocity (maybe acceleration)
• Player predicts where opponent is

t0 t1

t2

t3

send initial
position

send
update

send
update

send
update

Unit Owner
Actual Path

Opponent
Predicted Path

(User can see “Warp” or “Rubber band”.)
Slide 59

Opponent Prediction Algorithms
Unit Owner

• Sample user input
• Update {location | velocity

| acceleration} on basis of
new input

• Compute predicted location on
the basis of previous {location |
velocity | acceleration}

• If (current location – predicted
location) < threshold then
– Pack up {location | velocity

| acceleration} data
– Send to each other opponent

• Repeat

Opponent
• Receive new packet
• Extract state update information

{location | velocity |
acceleration}

• If seen unit before then
– Update unit information

• else
– Add unit information to list

• For each unit in list
– Update predicted location

• Render frame
• Repeat

Slide 60

4/10/2017

11

Opponent Prediction Notes
• Some predictions easy

– Ex: falling object
• Other predictions harder

– Ex: pixie that can teleport
• Some predictions game specific

– Ex: Can predict “return to base” with pre-defined notion of what
“return to base” is.

• Cost is having each host runs prediction algorithm for each
opponent.

• Also, although is latency compensation method, can greatly
reduce bitrate.
– Predict self. Don’t send updates unless needed.
– Especially when objects relatively static.

Slide 61

Why Else Does Latency Matter?

Time

User
Input

Message:
Treasure!

Message:
Treasure!

User
InputMessage:

Get treasure

Message:
Get treasure Message:

Ok

Message:
Tough luck!

Latency affects fairness
Solution? Manipulate time

Time Delay
Time Warp

Slide 62

Compensating for Latency –
Time Delay

• Server delays processing of events
– Wait until all messages from clients arrive

• Server sends messages to more distant client
first, delays messages to closer
– Needs accurate estimate of RTT

• (Note, game plays at highest round trip time (RTT))

Time

Client 1
command arrives

Client 2
command arrives

Server processes
both client commands

Time Delay
Slide 63

Compensating for Latency –
Time Warp

• In older FPS (e.g., Quake 3), player
had to “lead” opponent to hit
– Otherwise, opponent had

moved
– Even with “instant” weapon!

• Knowing latency roll-back (warp)
to when action taken place
– Usually assume ½ RTT

Time Warp Algorithm
• Receive packet from client
• Extract information (user input)
• elapsed time = current time –

latency to client
• Rollback all events in reverse

order to current time – elapsed
time

• Execute user command
• Repeat all events in order,

updating any clients affected
• Repeat

Slide 64

Time Warp Example
• Client 100 ms behind Server
• Shots still hits (note blood)

Slide 65

Time Warp Notes

• Inconsistency
– Opponent targets player
– Player moves around corner to hide
– Time warps backward  hit
– Bullets seem to “bend” around corner!

• Fortunately, player often does not notice
– Doesn’t see opponent
– May be just wounded

Slide 66

4/10/2017

12

Compensating for Latency –
Data Compression (1 of 2)

• Idea  less data, means less latency to get it there
– So, reduce # or size of messages  reduce latency (serialization)

• Use lossless compression (like zip)
• Opponent prediction

– Don’t send unless need update
• Delta compression (like opponent, but more general)

– Don’t send all data, just updates
• Interest management

– Only send data to units that need to see it (next slide)

Slide 67

Interest Management

Hider’s
Nimbus

Seeker’s
Nimbus

Hider’s
Focus Seeker’s

Focus

Where are
you?

Slide 68

Compensating for Latency –
Data Compression (2 of 2)

• Peer-to-Peer (P2P)
– Limit server congestion
– Also, client1serverclient2 higher latency than

client1client2
– But scales with slowest computer
– But cheating especially problematic in P2P systems

• Update aggregation
– Message Move A  Send C, Move B  Send C
– Instead, Move A + Move B  Send C
– Avoid packet overhead (if less than MTU)
– Works well w/time delay

Slide 69

Compensating for Latency –
Visual Tricks

• Latency present, but hide from user
– Give feeling of local response

• Ex: player pulls trigger, make sound and puff
of smoke while waiting for confirmation of hit

• Ex: player tells boat to move, while waiting for
confirmation raise sails, pull anchor

• Ex: player tells tank to move, while waiting,
batten hatches, start engine

Slide 70

Outline

• Introduction (done)
• Basic Internet Architecture (done)
• Loss and Latency (done)
• Latency Compensation Techniques (done)
• Client Server Synchronization (next)

– By Example – Dragonfly and UE4

Slide 71

Network Game Case Study –
Saucer Shoot 2

Saucer Shoot for two players

Slide 72

4/10/2017

13

Dragonfly – Network Manager
class NetworkManager : public Manager {

private:
NetworkManager();.
NetworkManager(NetworkManager const&);
void operator=(NetworkManager const&);
int sock;

public:

// Get the one and only instance of the NetworkManager.
static NetworkManager &getInstance();

// Start up NetworkManager.
int startUp();

// Shut down NetworkManager.
void shutDown();

// Accept only network events.
// Returns false for other engine events.
bool isValid(string event_type);

…

// Block, waiting to accept network connection.
int accept(string port = DRAGONFLY_PORT);

// Make network connection.
int connect(string host,

string port = DRAGONFLY_PORT);

// Close network connection.
int close();

// Send buffer to connected network.
int send(void *buffer, int bytes);

// Receive from connected network (no more than bytes).
int receive(void *buffer, int bytes);

// Check if network data.
int isData();

// Return true if network connected, else false.
bool isConnected();

// Return socket.
int getSocket();

};

Basic manager stuff Network specific stuff
Slide 73

Dragonfly – Network Events
#include "Event.h"

#define NETWORK_EVENT "__network__"

class EventNetwork : public Event {

private:
int bytes; // Number of bytes available

public:
// Default constructor.
EventNetwork();

// Create object with initial bytes.
EventNetwork(int initial_bytes);

// Set number of bytes available.
void setBytes(int new_bytes);

// Get number of bytes available.
int getBytes();

};

• Indicate network data is available
• And how much
• Bytes are actually still with

network manager

Slide 74

Client and Host Objects
• Host object (derived from Object) runs on server
• Client object (derived from Object) runs on client
• Host game started first, whereupon Host (using

NetworkManager) readies computer for connection
• Client (also using NetworkManager) starts after and

connects to Host
• Client gathers input normally, but also sends data to Host
• Host receives keystrokes sent by Client, generating network

events to game objects (e.g., the Client Hero) to handle
• Each game loop, Host checks all game objects to see which

ones are new and/or updated
– Need to synchronize Objects between Host and Client … but

how?

Slide 75

How to Synchronize Client and Host
(Server)?

• Many decisions for multiplayer game
– How are player actions transmitted to server?
– What Objects are synchronized and how often?
– How are inconsistencies between client and server

game states resolved?

• Key aspect – how to “send” Object from one
computer to another

Slide 76

Serializing (Marshalling) Objects

• Convert Object attributes to byte stream for
storage or transmission

http://www.techrepublic.com/article/application-development-an-introduction-to-serialization-in-net/

Network

Also known as
“marshalling”

Slide 77

Serializing Objects

// Serialize Object attributes to single string (json-like).
// e.g., "id:110,is_active:true, ...
// Only modified attributes are serialized (unless all is true).
virtual string serialize(bool all = false);

// Deserialize string to become Object attributes.
virtual int deserialize(string s);

// Return true if attribute modified since last serialize.
bool isModified(enum ObjectAttribute attribute);

Object class extensions to support marshalling

id:0,is_active:true,is_visible:true,event_count:0,box-corner-x:0,
box-corner-y:0,box-horizontal:1,box-vertical:1,pos-x:0,pos-y:0,
type:Object,sprite_name:,sprite_center:true,sprite_transparency:0,
sprite_index:0,sprite_slowdown:1,sprite_slowdown_count:0,altitude:2,
solidness:0,no_soft:false,x_velocity:0,x_velocity_countdown:0,
y_velocity:0, y_velocity_countdown:0,

e.g.,

Slide 78

4/10/2017

14

Synchronizing Objects (1 of 2)

• Only synchronize important objects and
events (e.g., Hero destruction vs. Stars
moving)

Slide 65

Synchronizing Objects (2 of 2)

• Have configuration for game (host | client)
– Can keep same codebase for Hero, Bullet, Points…

• Generally, only Host creates/destroys
– Except for Explosion

• Generally, Host and Client move and animate
– Except for Client Hero (see below)

• Client Player input
– Could update Hero location and synchronize

• But if not allowed, need to “roll back” state
– Instead, send keystrokes to server

• Let server move all Objects and send to client

Slide 80

Multi-player Networking

• Client-Server (no P2P support)
– Authoritative server, makes all decisions

• Replicate objects, variables, functions
– Replicated Actors are main “workhorse” server uses to

synchronize
– Server gathers attributes that change, send to client

• Not all objects, variables, functions need to be
replicated
– E.g., objects that compute AI behavior on server  only

when move Actor
– E.g., only replicate functions that result in client

seeing/hearing

Slide 81

Replication
• When replicated object

created/modified/destroyed
on server, sent to clients

• When replicated object
created/modified on client,
not sent
– Can be used for “cosmetic”

objects that don’t effect
gameplay

• Client sends information via
“run on server”
functionality
– Remote Procedure Call (RPC)

Slide 82

Remote Procedure Calls (RPC)

• RPCs are functions called locally (they look like
“normal” functions), but are executed on
server
– Client invokes via “run on server” function

• Allow client/server to send messages to each
other

• Used for playing sounds, spawning particles

Slide 83

Reliability

• Any replicated event can be reliable or unreliable
• Reliable

– Guaranteed to be called, resent if error, delayed when
bandwidth saturated
• E.g., use for starting game

• Unreliable
– Attempt to call, but not resent if error, dropped if

bandwidth saturated
• E.g., use for player movement

• NetMulticast – send to all clients (not true multicast)
– E.g., send notice of player death

Slide 84

4/10/2017

15

Summary
• Networking increasingly important for games

– The network is the computer
– Many games come with multi-player, online play,

downloads, player communities
• Internet influences design of game architecture

– Need to live with “best effort” service
• Choice of solution depends upon action within

game
– Transport protocol
– Latency compensation
– Client-server architectures dominate

• Game developers need to carefully consider
design of object synchronization

Slide 85

