
3/31/2016

1

Autonomous Movement

IMGD 4000

With material from: Millington and Funge, Artificial

Intelligence for Games, Morgan Kaufmann 2009 (Chapter 3),

Buckland, Programming Game AI by Example, Wordware

2005 (Chapter 3), http://opensteer.sourceforge.net and

http://gamedevelopment.tutsplus.com/series/understanding

-steering-behaviors--gamedev-12732

Introduction

• Fundamental requirement in many games is to move

characters (player avatar and NPC’s) around realistically and

pleasantly

• For some games (e.g., FPS) realistic NPC movement is pretty

much core (along with shooting) � there is no higher level

decision making!

• At other extreme (e.g., chess), no “movement” per se �

pieces just placed

Note: as for pathfinding, we’re going to treat everything in 2D,

since most game motion in gravity on surface (i.e., 2 ½ D)

2

3

Craig Reynolds

• The “giant” in this area – his influence cannot be
overstated
– 1987: “Flocks, Herds and Schools: A Distributed

Behavioral Model,” Computer Graphics

– 1998: Winner of Academy Award in Scientific and
Engineering category

• Recognition of “his pioneering contributions to the
development of three-dimensional computer animation for
motion picture production”

– 1999: “Steering Behaviors for Autonomous Characters,”
Proc. Game Developers Conference

– Left U.S. R&D group of Sony Computer Entertainment in
April 2012 after 13 years

– Now (2015) at SparX (eCommerce coding within Staples)

Website: http://www.red3d.com/cwr/

Outline

• Introduction (done)

• The “Steering” Model (next)

• Steering Methods

• Flocking

• Combining Steering Forces

5

The “Steering” Model

Action Selection

Steering

Locomotion

Choosing goals and plans, e.g.

• “go here”

• “do A, B, and then C”

Calculate trajectories to satisfy goals and

plans

Produce steering force that determines

where and how fast character moves

Mechanics (“how”) of motion

• Differs for characters, e.g., fish vs.

horse (e.g., compare animations)

• Independent of steering

The “Steering” Model – Example

• Cowboys tend herd of cattle

• Cow wanders away

• Trail boss tells cowboy to
fetch stray

• Cowboy says “giddy-up” and
guides horse to cow,
avoiding obstacles

• Trail boss decision
represents action
– Observes world – cow is

missing

– Setting goal – retrieve cow

• Steering done by cowboy
– Go faster, slower, turn right,

left …

• Horse implements
locomotion
– With signal, go in indicated

direction

– Account for mass when
accelerating/turning

– Provide animation

Note, depending upon the

game, player could control

boss or cowboy (or both)!

3/31/2016

2

Action Selection

• Done through variety of means…

– e.g., decision tree or FSM

– (see earlier slide deck)

• Examples:

– “Get health pack”

– “Charge at enemy”

• Player input

– “Return to base”

– “Fetch cow”

Action Selection

8

Locomotion Dynamics

class Body

// Point mass of rigid body

mass // scalar

position // vector

velocity // vector

// Orientation of body

heading // vector

// Dynamic properties of body

maxForce // scalar

maxSpeed // scalar

def update (dt) {

force = ...; // Combine forces from steering behaviors

acceleration = force / mass; // Update acceleration w/Newton's 2nd law

velocity += truncate (acceleration * dt, maxSpeed); // Update speed

position += velocity * dt; // Update position

if (| velocity | > 0.000001) // If vehicle moving enough

heading = normalize (velocity); // Update heading to velocity vector

// render …

}

Steering

Locomotion

// Scale vector to appropriate size (max)

vector truncate(vector v, int max) {

float f;

f = max / v.getLength();

if (f < 1.0)

f = 1.0

v.scaleBy(f);

return v;

}

9

Individual Steering “Behaviors”

seek flee

arrive pursue

wander evade

interpose hide

avoid obstacles follow path

Multiple behaviors combine forces (e.g., flocking)

Steering

Compute forces

So “Steering” in this Context Means

Making objects move by:

• Applying forces

instead of

• Directly transforming their positions

Why?

• ...because it looks much more natural

10

i.e., “steering” does not mean just using, say, the arrow/WASD keys to

move an avatar, but doing motion by applying forces

Adding Forces in UE4

Add force to a single rigid body
virtual void AddForce (Fvector Force, Fname BoneName)

– Force – force vector to apply. Magnitude is

strength of force

– BoneName – name of body to apply it to (‘None’

to apply to root body)

Blueprints

void AMyCharacter::AddUpwardForce() {

const float ForceAmount = 20000.0f;

Fvector force(0.0f, 0.0f, ForceAmount);

Fname bone; // defaults to “NAME_None”

this->AddForce(force, bone);

}

C++ Note: max velocity property of object
Distance units are centimeters

i.e., earth gravity 981 cm/s2 12

Steering Methods

class Body {

def update (dt) {

force = ... // combine forces from steering behaviors

…

}

def seek (target) { ... return force; }

def flee (target) { ... return force; }

def arrive (target) { ... return force; }

def pursue (body) { ... return force; }

def evade (body) { ... return force; }

def hide (body) { ... return force; }

def interpose (body1, body2) { return force: }

def wander () { ... return force; }

def avoidObstacles () { ... return force; }

...

};

• Forces returned by each

method are combined

(shown later)

• Individual behaviors can

be turned on/off (next

slide)

3/31/2016

3

Turning Steering Methods On & Off

• Action Selection controls which steering

behaviors on/off

13

vector Body::calcForce() {

if (doSeek()) {

force += seek();

…

}

class Body {

private:

bool seek_on;

public:

void setSeek(bool on=true);

bool doSeek();

…

}

Reference Code in C++

• Complete example code for this unit from
Buckland’s book can be downloaded from:
http://samples.jbpub.com/9781556220784/Buckland_SourceCode.zip

– Folder for Chapter 3

• See also learning guide’s “Understanding
Steering Behaviors”:
http://gamedevelopment.tutsplus.com/series/understanding-steering-
behaviors--gamedev-12732

– Similar concepts, slightly different code
implementation

14

Outline

• Introduction (done)

• The “Steering” Model (done)

• Steering Methods (next)

• Flocking

• Combining Steering Forces

16

Seek: Steering Force
target

velocity

desired velocity

def seek (target) {

// vector from here to target scaled by maxSpeed

desired = truncate (target - position, maxSpeed);

// return steering force

return desired - velocity; // vector difference

}

steering force

DEMO

(Force: INS/DEL,

Speed: HOME/END)

Will result in smooth path!

Note: treat position as a

vector (direction is ignored)

17

Problem with Seek?

• What happens when reaches target?

• How bad is it?

18

Problem with Seek

• What happens when reaches target?

– Overshoots target

• How bad is it?

– Amount of overshoot determined by ratio of maxSpeed to
maximum force applied

• Intuitively, should decelerate as gets closer to target

� Arrive

3/31/2016

4

19

Arrive: Variant of Seek Behavior
• When body is far away from target, it behaves just like

seek, i.e., closes at maximum speed

• Deceleration only when close to target, e.g., ‘speed’
reduced below ‘maxSpeed’ when within range

20

Arrive
def arrive (target) {

distance = | target – position |; // distance to target

if (distance == 0) return [0,0]; // if at target, stop

// slow down linearly with distance.

// DECELERATION allows tweaking (larger is slower)

speed = distance / DECELERATION;

// current speed cannot exceed maxSpeed

speed = min(speed, maxSpeed);

// vector from here to target scaled by speed

desired = truncate(target - position, speed);

// return steering force as in seek (note, if heading

// directly at target already, this just decelerates)

return desired - velocity;

}

DEMO

target

velocity

desired velocity

steering force

distance

Decelerates linearly.

Example: Max speed 4, initial

distance 10.
DECELERATION

2 1

Dist Speed Speed

10 4 4

9 4 4

8 4 4

7 3.5 4

6 3 4

5 2.5 4

4 2 4

3 1.5 3

2 1 2

1 0.5 1

0 0 0

Note, when at target, desired velocity is zero.

� Steering force becomes -velocity

Added to force, stops moving!

21

Flee: Opposite of Seek

target

velocity

desired velocity

steering force

def flee (target) {

desired = truncate (position - target, maxSpeed);

return desired - velocity;

}

DEMO

Produces curved (orange) path

Note: Buckland adds

“range” to only flee if

near, but that is really an

Action Selection decision.

Seek and Ye Shall Find?

• If seek moving target,

will curve towards it

• (Much like a dog

chasing hare ☺)

• Instead, seek

to target

location in the

future

https://en.wikipedia.org/wiki/Radiodrome

Note, depending upon speed and

tick-rate, may not be smooth.

�Physics (see later slide deck)

23

Pursue: Seek Predicted Position (1 of 2)

velocity

desired velocity

steering force

target

evader

pursuer

Note:

• Success of pursuit depends on how
well can predict evader’s future
position

• Tradeoff of CPU time vs. accuracy

• Special case: if evader almost dead
ahead, just seek

24

Pursue: Seek Predicted Position (2 of 2)

def pursue (body) {

toBody = body.position - position;

// if within ~20 degrees ahead, simply seek
facing = computeFacing(heading, body);

if (facing > -10 && facing < -10)
return seek (body.position);

// calculate lookahead time based on distance and speeds
// note: this could be hardcoded (e.g., 100 ms) or use more
// sophisticated prediction
dt = | toBody | / (maxSpeed + | body.velocity |);

// seek predicted position, assuming body moves in straight line
// note: again, this could use more sophisticated prediction
return seek (body.position + (body.velocity * dt));

}

DEMO

Longer distance, then higher

time (dt)

� Pursuer seek point far ahead

And vice-versa

3/31/2016

5

Don’t Just Flee, Evade!

• Predict where target will be

• Move in opposite direction

Evade: Opposite of Pursue (1 of 2)

velocity

desired velocity

steering force

target

pursuer

evader

Almost same as pursue,

but this time evader flees

predicted position

27

Evade: Opposite of Pursue (2 of 2)

def evade (body) {

toBody = body.position - position;

// no special case check for dead ahead

// calculate lookahead time based on distance and speeds

dt = | toBody | / (maxSpeed + | body.velocity |);

// flee predicted position

return flee (body.position + (body.velocity * dt));

}

28

Pursue with Offset (1 of 2)

• What if don’t want to intercept, but be near?

– Marking an opponent in sports

– Staying docked with moving spaceship

– Shadowing an aircraft

– Implementing battle formations

• Solution � Pursue with Offset

– Steering force to keep body at specified offset
from target body

• (This is not “flocking”, which we will see later)

CC Generals

29

Pursue with Offset (2 of 2)

velocity

desired velocity

steering force leader

pursuer

target
offset

def pursue (body, offset) {

// calculate lookahead time based on distance and speeds

dt = | position - (body.position + offset) | /

(maxSpeed + | body.velocity |);

// arrive at predicted offset position (vs. seek)

return arrive (body.position + offset + (body.velocity * dt));

}
DEMO

Interpose (1 of 3)

• Similar to pursue

• Return steering force to move body to
midpoint of imaginary line connecting two
bodies

• Useful for:

– Bodyguard taking a bullet

– Soccer player intercepting pass

• Like pursue, main trick is to estimate
lookahead time (dt) to predict target point

30

3/31/2016

6

31

Interpose (2 of 3)
(1) Bisect line between bodies

(2) Calculate dt to bisection point

(3) Target arrive at midpoint of predicted positions

32

Interpose (3 of 3)

def interpose (body1, body2) {

// lookahead time to current midpoint

dt = | body1.position + body2.position | / (2*maxSpeed);

// extrapolate body trajectories

position1 = body1.position + body1.velocity * dt;

position2 = body2.position + body2.velocity * dt;

// steer to midpoint

return arrive ((position1 + position2) / 2);

}

DEMO

33

Wander

• Goal is to produce steering force which gives
impression of random walk though agent’s
environment

• Naive approach:

– Calculate random steering force each update step

– Produces unpleasant “jittery” behavior

• Reynold’s approach:

– Project circle in front of body

– Steer towards randomly moving target constrained
along perimeter of the circle

34

Wander

steering force

target

wander distance

wander
radius

wander distance

wander
radius

35

Wander

// initial random point on circle

wanderTarget = ...;

def wander () {

// displace target random amount

wanderTarget += [random(0, JITTER), random(0, JITTER)];

// project target back onto circle
wanderTarget.normalize();

wanderTarget *= RADIUS;

// move circle wander distance in front of agent

wanderTarget += bodyToWorldCoord([DISTANCE, 0]);

// steer towards target

return wanderTarget - position;

}

target

wander distance

wander
radius

DEMO

36

Individual Steering “Behaviors”

seek flee

arrive pursue

wander evade

interpose hide

avoid obstacles follow path

Multiple behaviors combine forces

Steering

Compute forces

3/31/2016

7

37

Path Following
• Create steering force that moves body along a

series of waypoints (open or looped)

• Useful for:

– Patrolling (guard duty) agents

– Predefined paths through difficult terrain

– Racing cars around a track

looped

path
open path

A path can be described by an array of vectors.

38

Path Following: Using Seek

• Invoke ‘seek’ on each waypoint until ‘arrive’
at finish (if any)

path = ...; // (circular) list of waypoints

current = path.first() ; // current waypoint vector

def followPath () {

if (| current – position | < SEEK_DISTANCE)

if (path.isEmpty())

return arrive (current);

else

current = path.next();

return seek (current);

}
Sensitive to SEEK_DISTANCE and ratio of

maxForce to maxSpeed (in underlying

locomotion model)

• tighter path for interior corridors

• looser for open outdoors DEMO

Mini-Outline

• Interacting with the Environment

– Obstacle Avoidance

– Hide

– Wall Avoidance

39 40

Obstacle Avoidance
• Treat obstacles as circular bounding volumes

• Basic idea: extrude “detection box” (width of

body, length proportional to speed) in front of

body in direction of motion (like intersection

testing)

41

Obstacle Avoidance Algorithm Overview

1. Find closest intersection point

2. Calculate steering force to avoid obstacle

(expand each next)

42

Obstacle Avoidance Algorithm (1 of 3)

1. Find closest intersection point
(a) discard all obstacles which do not overlap with

detection box

(b) expand obstacles by half width of detection box

(c) find intersection points of trajectory line and
expanded obstacle circles

(d) choose closest intersection point in front of body

3/31/2016

8

43

lateral force

braking force

Obstacle Avoidance Algorithm (2 of 3)

2. Calculate steering force

(a) combination of lateral and braking forces

(b) each proportional to body’s distance from

obstacle (needs to react quicker if closer)

Obstacle Avoidance Algorithm (3 of 3)

def computeAvoidForce (closestObstacle) {

// convert to “local” space, so object is at origin

// the closer it is, the stronger the force away

multiplier = 1 + (box.getLength() – closestObstacle.getX()) / box.getLength()

// calculate lateral force

force.y = (closestObstacle().getRadius() – closestObstacle().getY()) * multiplier

// apply braking force proportional to obstacles distance

brakingWeight = 2.0

force.x = (closestObstacle().getRadius() – closestObstacle.getX()) * brakingWeight

// convert vector back to world space

return vectorToWorld (force)

}

DEMO

45

Hide

• Attempt to position body so obstacle is always

between itself and other body

• Useful for:

– NPC hiding from player

• to avoid being shot by player

• to sneak up on player (combine hide and seek)

46

Hide

for each obstacle, determine hiding spot (projected point opposite
each obstacle)

if no hiding spots then invoke ‘evade’

else invoke ‘arrive’ to closest hiding spot

Hide - Possible Refinements

• Action selection decisions
to …

• Only hide if can “see”
other body
– tends to look dumb (i.e.,

agent has no memory)

– can improve by adding
time constant, e.g., hide if
saw other body in last <n>
seconds

• Only hide if can “see”
other body and other
body can “see” you

• Add “panic distance” so if
super close, then flee

47

DEMO

48

Wall Avoidance

steering

force

penetration depth

1. Test for intersection of three “feelers” with wall (like cat

whiskers)

2. Calculate penetration depth of closest intersection

3. Return steering force perpendicular to wall with

magnitude equal to penetration depth

DEMO

3/31/2016

9

Outline

• Introduction (done)

• The “Steering” Model (done)

• Steering Methods (done)

• Flocking (next)

• Combining Steering Forces

50

“Flocking” = Group Steering Behaviors

• Combination of three steering behaviors:

– cohesion

– separation

– alignment

• Each applied to all bodies based on neighbors

(next)

DEMO

51

Neighbors

• Variation:
– Restrict neighborhood to field of view (e.g., 180 deg.) in front

(May be more realistic in some applications)

neighborhood

radius
Neighbors

determined by

distance (circle)

from body

52

Separation (1 of 2)

• Add force that steers body away from others

in neighborhood

53

Separation (2 of 2)

• Vector to each neighbor is normalized and
divided by distance (i.e., stronger force for
closer neighbors)

def separation () {

force = [0,0];

for each neighbor

direction = position - neighbor.position;

force += normalize(direction) / | direction |;

return force;

}

Divide by bigger number when

farther, smaller number when closer

54

Alignment (1 of 2)

• Attempt to keep body’s heading aligned

with its neighbors headings

3/31/2016

10

55

Alignment (2 of 2)

• Return steering force to correct towards
average heading vector of neighbors

heading

average heading of

neighbors

steering force

def alignment () {

average = [0,0];

for each neighbor

average += neighbor.heading;

average /= |neighbors|;

return average - heading;

}

56

Cohesion

• Produce steering force that moves body

towards center of mass of neighbors

def cohesion () {

center = [0,0];

for each neighbor

center += neighbor.position;

center /= | neighbors |;

return seek (center);

}

Flocking Force Combination

• Combine flocking
forces with weights
– Different weights

give different
behaviors

– (Related to next
topic)

• Note, if isolated
neighbor out of
range, will do
nothing
– Add “wander”

behavior

def flock () {

vector force = [0,0];

vector force =

separation() * separation_weight

+ alignment() * alignment_weight

+ cohesion() * cohesion_weight

+ wander() * wander_weight;

return force;

}

DEMO

58

Flocking – Summary

• An “emergent behavior”

– Looks complex and/or purposeful to observer

– But actually driven by fairly simple rules

– Component entities don’t have “big picture”

• Tunable to different kinds of flocks

• Often used in films

– Bats and penguins in Batman Returns

– Orc armies in Lord of the Rings

Outline

• Introduction (done)

• The “Steering” Model (done)

• Steering Methods (done)

• Flocking (done)

• Combining Steering Forces (next)

Combining Steering Behaviors:

Examples

• FPS bots

– Path following (point A to point B)

– Obstacle avoidance (crates, barrels)

– Pursue with offset (formation)

– Separation

• Animal simulation (e.g., sheep in RTS)

– Wander

– Obstacle avoidance (e.g., trees)

– Flee (e.g., predator)

60

3/31/2016

11

61

Combine Steering Forces

class Body {

def update (dt) {

force = calcForce();

…

}

def seek (target) { ... return force; }

def flee (target) { ... return force; }

def arrive (target) { ... return force; }
def pursue (body) { ... return force; }

def evade (body) { ... return force; }

def hide (body) { ... return force; }

def interpose (body1, body2) { ... return force: }

def wander () { ... return force; }

def avoidObstacles () { ... return force; }

...

};

vector Body::calcForce() {

vector force;

force += wander();

force += avoidObstacles();

force += …

return truncate (force, maxForce);
}

Other choices for combination?

62

Combining Steering Forces

• Two basic approaches:

– Blending

– Priorities

• Advanced combined approaches:

– Weighted truncated running sum with
prioritization [Buckland]

– Prioritized dithering [Buckland]

– Pipelining [Millington]

• All involve significant tweaking of parameters

63

Blending Steering

• All steering methods are called, each returning a
force (could be [0,0])

• Forces combined as linear weighted sum:

w1F1 + w2F2 + w3F3 + ...
– weights do not need to sum to 1

– weights tuned by trial and error

• Final result will be limited (truncated) by
maxForce

vector Body::calcForce() {

vector force;

force += wander() * wander_weight;

force += avoidObstacles() * avoid_weight;

force += …

return truncate (force, maxForce);
}

64

Blended Steering – Problems

• Expensive, since all methods called every tick

• Conflicting forces not handled well
– Tries to “compromise”, rather than giving priority

– e.g., avoid obstacle and seek, can end up partly
penetrating obstacle

• Very hard to tweak weights to work well in all
situations
– e.g., vehicle by wall and neighbors – separation force may

be great so hits wall. If tweak avoid wall weight higher,
when alone near wall may act odd

• Note: can work well in limited cases (e.g., flocking)
where there are few conflicts

65

Prioritized Steering

• Intuition: Many of steering behaviors only
return force in appropriate conditions
– e.g., vehicle with separation, alignment, cohesion,

wall avoidance, obstacle avoidance. Should give
priority to wall avoidance and obstacle avoidance.

• Algorithm:
– Sort steering methods into priority order

– Call methods one at a time until first one returns
non-zero force

– Apply that force and stop evaluation
• Helps with consistent behavior

• Plus saves CPU

DEMO – Big Shoal

Prioritized Steering – Variation

1. Add force. If less than maxForce, continue.

Otherwise, stop evaluation and apply force.

– Additional variation can apply weights to forces

2. Define groups of behaviors with blending inside

each group and priorities between groups

vector Body::calcForce() {

vector force;

force += avoidObstacles() * avoid_weight;

if (magnitude (force) >= maxForce)

return truncate (force, maxForce);

force += wander() * wander_weight;

if (magnitude (force) >= maxForce)

…
}

3/31/2016

12

Prioritized Dithering (Reynolds)

• In addition to priority
order, associate a
probability with each
steering method

• Use random number and
probability to sometimes
skip some methods in
priority order (on some
ticks)

• Gives lower priority
methods some influence
without problems of
blending

67

vector Body::calcForce() {

vector force;

prob_avoid = 0.9;

prob_wander = 0.2;

if (random (0-1) < prob_avoid) {

force += avoidObstacles() * avoid_weight;

if (magnitude (force) >= maxForce)

return truncate (force, maxForce);

}

if (random (0-1) < prob_wander) {

force += wander() * wander_weight;

if (magnitude (force) >= maxForce)

…

}

}

68

Another Problem – Judder
• Conflicting behaviors can alternate, causing

“judder” (jitter/shudder – note, usually slight)

– e.g., avoidObstacle and seek

� avoidObstacle forces away from obstacle until it is out of

range

� seek pushes back into range

� ...

t=1 t=2 t=3

avoid

seek

avoid

69

Judder Solution – Smoothing

• Simple hack (per Robin Green, Sony):
– Decouple heading from velocity vector

– Average heading over “several” ticks

– Tune number of ticks for smoothing (keep small to minimize
memory and CPU)

� Smaller oscillations

– Not perfect solution, but produces adequate results at low cost

t=1 t=2 t=3

avoid

seek

avoid

DEMO – Big Shoal vs. Another Big Shoal with Smoothing

