
126 Chapter 3 Movement

Conclusion

The steering pipeline is one of many possible cooperative arbitration mechanisms.

Unlike other approaches, such as decision trees or blackboard architectures, it is

specifically designed for the needs of steering.

On the other hand, it is not the most efficient technique. While it will run very

quickly for simple scenarios, it can slow down when the situation gets more complex.

If you are determined for your characters to move intelligently, then you will have to

pay the price in execution speed sooner or later (in fact, to guarantee it, you’ll need

full motion planning, which is even slower than pipeline steering). In many games,

however, the prospect of some foolish steering is not a major issue, and it may be

easier to use a simpler approach to combining steering behaviors, such as blending.

3.5 PREDICTING PHYSICS

A common requirement of AI in 3D games is to interact well with some kind of

physics simulation. This may be as simple as the AI in variations of Pong, that tracked

the current position of the ball and moved the bat so that it intercepted the ball, or

it might involve the character correctly calculating the best way to throw a ball so

that it reaches a teammate who is running. We’ve seen examples of this already. The

pursue steering behavior predicted the future position of its target by assuming it

would carry on with its current velocity. At its most complex, it may involve deciding

where to stand to minimize the chance of being hit by an incoming grenade.

In each case, we are doing AI not based on the character’s own movement (al-

though that may be a factor), but on the basis of other characters’ or objects’ move-

ment.

By far, the most common requirement for predicting movement is for aiming and

shooting firearms. This involves the solution of ballistic equations: the so-called “Fir-

ing Solution.” In this section we will first look at firing solutions and the mathematics

behind them. We will then look at the broader requirements of predicting trajectories

and a method of iteratively predicting objects with complex movement patterns.

3.5.1 AIMING AND SHOOTING

Firearms, and their fantasy counterparts, are a key feature of game design. In almost

any game you choose to think of, the characters can wield some variety of projectile

weapon. In a fantasy game it might be a crossbow or fireball spell, and in a science

fiction (sci-fi) game it could be a disrupter or phaser.

This puts two common requirements on the AI. Characters should be able to

shoot accurately, and they should be able to respond to incoming fire. The second

requirement is often omitted, since the projectiles from many firearms and sci-fi

3.5 Predicting Physics 127

weapons move too fast for anyone to be able to react to. When faced with weapons

such as RPGs or mortars, however, the lack of reaction can appear unintelligent.

Regardless of whether a character is giving or receiving fire, it needs to understand

the likely trajectory of a weapon. For fast-moving projectiles over small distances, this

can be approximated by a straight line, so older games tended to use simple straight

line tests for shooting. With the introduction of increasingly complex physics simula-

tion, however, shooting along a straight line to your targets is likely to see your bullets

in the dirt at their feet. Predicting correct trajectories is now a core part of the AI in

shooters.

3.5.2 PROJECTILE TRAJECTORY

A moving projectile under gravity will follow a curved trajectory. In the absence of

any air resistance or other interference, the curve will be part of a parabola, shown in

Figure 3.45.

The projectile moves according to the formula

Ept = Ep0 + Eusmt +
Egt2

2
[3.1]

where Ept is its position (in three dimensions) at time t, Ep0 is the firing position

(again in three dimensions), sm is the muzzle velocity (the speed the projectile left

the weapon—it is not strictly a velocity because it is not a vector), Eu is the direction

the weapon was fired in (a normalized 3D vector), t is the length of time since the

shot was fired, and Eg is the acceleration due to gravity. The notation Ex denotes that x

is a vector. Others values are scalar.

It is worth noting that although the acceleration due to gravity on earth is

Eg =

[

0

−9.81

0

]

ms−2

(i.e., 9.81 ms−2 in the down direction), this can look too slow in a game envi-

ronment. Physics middleware vendors such as Havok recommend using a value

Figure 3.45 Parabolic arc

128 Chapter 3 Movement

around double that for games, although some tweaking is needed to get the exact

look.

The simplest thing we can do with the trajectory equations is to determine if a

character will be hit by an incoming projectile. This is a fairly fundamental require-

ment of any character in a shooter with slow-moving projectiles (such as grenades).

We will split this into two elements: determining where a projectile will land and

determining if its trajectory will touch the character.

Predicting a Landing Spot

The AI should determine where an incoming grenade will land and then move quickly

away from that point (using a flee steering behavior, for example, or a more complex

compound steering system that takes into account escape routes). If there’s enough

time, an AI might move toward the grenade point as fast as possible (using arrive,

perhaps) and then intercept and throw back the ticking grenade, forcing the player to

pull the grenade pin and hold it for just the right length of time.

We can determine where a grenade will land by solving the projectile equation for

a fixed value of py (i.e., the height). If we know the current velocity of the grenade and

its current position, we can solve for just the y component of the position and get the

time at which the grenade will reach a known height (i.e., the height of the floor on

which the character is standing):

ti =
−uysm ±

√

u2
ys2

m − 2gy(py0 − pyt)

gy

, [3.2]

where pyi is the position of impact, and ti is the time at which this occurs. There may

be zero, one, or two solutions to this equation. If there are zero solutions, then the

projectile never reaches the target height; it is always below it. If there is one solution,

then the projectile reaches the target height at the peak of its trajectory. Otherwise, the

projectile reaches the height once on the way up and once on the way down. We are

interested in the solution when the projectile is descending, which will be the greater

time value (since whatever goes up will later come down). If this time value is less

than zero, then the projectile has already passed the target height and won’t reach it

again.

The time ti from Equation 3.2 can be substituted into Equation 3.1 to get the

complete position of impact:

Epi =

[

px0 + uxsmti +
1
2
gxt2

i

pyi

pz0 + uzsmti +
1
2
gzt2

i

]

[3.3]

3.5 Predicting Physics 129

which further simplifies, if (as it normally does) gravity only acts in the down direc-
tion, to

Epi =

[

px0 + uxsmti

pyi

pz0 + uzsmti

]

.

For grenades, we could compare the time to impact with the known length of
the grenade fuse to determine whether it is safer to run from or catch and return the
grenade.

Note that this analysis does not deal with the situation where the ground level is
rapidly changing. If the character is on a ledge or walkway, for example, the grenade
may miss impacting at its height entirely and sail down the gap behind it. We can use
the result of Equation 3.3 to check if the impact point is valid.

For outdoor levels with rapidly fluctuating terrain, we can also use the equation
iteratively, generating (x, z) coordinates with Equation 3.3 and then feeding the py

coordinate of the impact point back into the equation, until the resulting (x, z) values
stabilize. There is no guarantee that they will ever stabilize, but in most cases they
do. In practice, however, high explosive projectiles typically damage a large area, so
inaccuracies in the impact point prediction are difficult to spot when the character is
running away.

The final point to note about incoming hit prediction is that the floor height of the
character is not normally the height at which the character catches. If the character is
intending to catch the incoming object (as it will in most sports games, for example),
it should use a target height value at around chest height. Otherwise, it will appear to
maneuver in such a way that the incoming object drops at its feet.

3.5.3 THE FIRING SOLUTION

To hit a target at a given point EE, we need to solve Equation 3.1. In most cases we
know the firing point ES (i.e., ES ≡ Ep0), the muzzle velocity sm, and the acceleration due
to gravity Eg; we’d like to find just Eu, the direction to fire in (although finding the time
to collision can also be useful for deciding if a slow-moving shot is worth it).

Archers and grenade throwers can change the velocity of the projectile as they fire
(i.e., they select an sm value), but most weapons have a fixed value for sm. We will
assume, however, that characters who can select a velocity will always try to get the
projectile to its target in the shortest time possible. In this case they will always choose
the highest possible velocity.

In an indoor environment with many obstacles (such as barricades, joists, and
columns), it might be advantageous for a character to throw its grenade more slowly
so that it arches over obstacles. Dealing with obstacles in this way gets to be very com-
plex and is best solved by a trial and error process, trying different sm values (normally
trials are limited to a few fixed values: “throw fast,” “throw slow,” and “drop,” for ex-
ample). For the purpose of this book, we’ll assume that sm is constant and known in
advance.

130 Chapter 3 Movement

The quadratic Equation 3.1 has vector coefficients. Add the requirement that the
firing vector should be normalized,

|Eu| = 1,

and we have four equations in four unknowns:

Ex = Sx + uxsmti +
1

2
gxt2

i ,

Ey = Sy + uysmti +
1

2
gyt2

i ,

Ez = Sz + uzsmti +
1

2
gzt2

i ,

1 = u2
x + u2

y + u2
z .

These can be solved to find the firing direction and the projectile’s time to target.
First, we get an expression for ti:

|Eg|2t4
i − 4

(

Eg. E1 + s2
m

)

t2
i + 4| E1|2 = 0,

where E1 is the vector from the start point to the end point, given by E1 = EE − ES. This
is a quartic in ti, with no odd powers. We can therefore use the quadratic equation
formula to solve for t2

i and take the square root of the result. Doing this, we get

ti = +2

√

√

√

√

Eg. E1 + s2
m ±

√

(Eg. E1 + s2
m)2 − |Eg|2| E1|2

2|Eg|2

which gives us two real-valued solutions for time, of which a maximum of two may
be positive. Note that we should strictly take into account the two negative solutions
also (replacing the positive sign with a negative sign before the first square root). We
omit these because solutions with a negative time are entirely equivalent to aiming in
exactly the opposite direction to get a solution in positive time.

There are no solutions if

(

Eg. E1 + s2
m

)2
< |Eg|2| E1|2.

In this case the target point cannot be hit with the given muzzle velocity from
the start point. If there is one solution, then we know the end point is at the absolute
limit of the given firing capabilities. Usually, however, there will be two solutions, with
different arcs to the target. This is illustrated in Figure 3.46. We will almost always
choose the lower arc, which has the smaller time value, since it gives the target less
time to react to the incoming projectile and produces a shorter arc that is less likely
to hit obstacles (especially the ceiling).

3.5 Predicting Physics 131

Long time

trajectory

Short time

trajectory Target

Figure 3.46 Two possible firing solutions

We might want to choose the longer arc if we are firing over a wall, in a castle-

strategy game, for example.

With the appropriate ti value selected, we can determine the firing vector using

the equation

Eu =
2 E1 − Egt2

i

2smti

.

The intermediate derivations of these equations are left as an exercise.

This is admittedly a mess to look at, but can be easily implemented as follows:

1 def calculateFiringSolution(start, end, muzzle_v, gravity):

2

3 # Calculate the vector from the target back to the start

4 delta = start - end

5

6 # Calculate the real-valued a,b,c coefficients of a conventional

7 # quadratic equation

8 a = gravity * gravity

9 b = -4 * (gravity * delta + muzzle_v*muzzle_v)

10 c = 4 * delta * delta

11

12 # Check for no real solutions

13 if 4*a*c > b*b: return None

14

15 # Find the candidate times

16 time0 = sqrt((-b + sqrt(b*b-4*a*c)) / (2*a))

17 time1 = sqrt((-b - sqrt(b*b-4*a*c)) / (2*a))

18

19 # Find the time to target

20 if times0 < 0:

132 Chapter 3 Movement

21 if times1 < 0:

22 # We have no valid times

23 return None

24 else:

25 ttt = times1

26 else:

27 if times1 < 0:

28 ttt = times0

29 else:

30 ttt = min(times0, times1)

31

32 # Return the firing vector

33 return (2 * delta - gravity * ttt*ttt) / (2 * muzzle_v * ttt)

This code assumes that we can take the scalar product of two vectors using the

a * b notation. The algorithm is O(1) in both memory and time. There are opti-

mizations to be had, and the C++ source code on the CD contains an implementation

LIBRARY

of this function where the math has been automatically optimized by a commercial

equation to code converter for added speed.

3.5.4 PROJECTILES WITH DRAG

The situation becomes more complex if we introduce air resistance. Because it adds

complexity, it is very common to see developers ignoring drag altogether for calcu-

lating firing solutions. Often, a drag-free implementation of ballistics is a perfectly

acceptable approximation. Once again, the gradual move toward including drag in

trajectory calculations is motivated by the use of physics engines. If the physics en-

gine includes drag (and most of them do to avoid numerical instability problems),

then a drag-free ballistic assumption can lead to inaccurate firing over long distances.

It is worth trying an implementation without drag, however, even if you are using a

physics engine. Often, the results will be perfectly usable and much simpler to imple-

ment.

The trajectory of a projective moving under the influence of drag is no longer a

parabolic arc. As the projectile moves, it slows down, and its overall path looks like

Figure 3.47.

Adding drag to the firing calculations considerably complicates the mathematics,

and for this reason most games either ignore drag in their firing calculations or use a

kind of trial and error process that we’ll look at in more detail later.

Although drag in the real world is a complex process caused by many interacting

factors, drag in computer simulation is often dramatically simplified. Most physics

engines relate the drag force to the speed of a body’s motion with components related

to either velocity or velocity squared or both. The drag force on a body, D, is given

