A*

- Use best of Djikstra and Best-First
- Both heuristic cost (best first - estimate) and given cost (Djikstra - actual) to pick next node from open list

 Estimated Final Cost = Given Cost + (Heuristic Cost * Heuristic Weight)

(Avoids Best-First trap!)

A* Internals (1 of 3)

- Green: start
- Red: goal
- Blue: barrier

G: 10 for ver/horiz, 14 for diag
H: “manhattan distance” to dest * 10
F: Estimated “cost” (G+H)

A* Internals (2 of 3)

- Now check for the lowest F value in OPEN
 - In this case NE, SE both 54, so randomly choose SE
- Going directly to SE is cheaper than E->SE
 - Leave start as the parent of SE, and iterate

A* Internals (3 of 3)

- Keep iterating until reach goal and OPEN is empty
- Follow parent links to get short path

(Note: crossing corners of objects not allowed)
A* Characteristics

- On average, uses fewer resources than Dijkstra and Breadth-First
- Heuristic search
 - “Weight” can control how much to value heuristic (H)
 - If 0 then like Dijkstra
 - If large then like Best-First
 - “Good” heuristic guarantees it will find optimal path
 - “Good” as long as doesn’t overestimate actual cost
 - For maps, “good” is “as a bird flies” distance (best-case)
- Complete algorithm