
3/16/2016

1

Game Engines

IMGD 4000

Pedagogical Goal

• Your technical skills should not be tied to any
particular game engine

• Just like your programming skills should not be
tied to any particular programming language

• Use best tools for each job

• ... or tools you were given 

2

3

Game Engine Definition

Game Engine

“A series of modules and interfaces that allows a
development team to focus on product game-
play content, rather than technical content.”

 [Julian Gold, O-O Game Dev.]

• But this class is about “the technical content”! 

4

Buy versus Build

• Depends on your needs, resources and
constraints
– Technical needs (e.g., “pushing the envelope”?)

– Financial resources (e.g., venture capital?)

– Time constraints (e.g., 1 month or 2 years?)

– Platform constraints (e.g., Flash?)

– Other factors (e.g., sequel?)

• Most games commonly built today with some
sort of “engine layer”

Why Build?

• Need – Technical needs of game not supported by
existing engines

• Pedagogy – learn specific skill/concept
• Control – Provide a better understanding of engine-

game interaction when making game
– Can extend/adjust engine if needed

• Genre – have engine especially fit genre (lightweight,
just features required)

• Licensing – don’t want to pay out royalty fees
– Note, simple cost should not be a reason – there are many

excellent cheap/free engines  it will “cost” more to build
an engine!

Why Buy?

• Financial – don’t have the time/money to
build and engine

• Support – existing engine has large user
community and/or documentation and/or
technical support

• Robust – existing engine has fewer bugs, tried
and true code base

• Experience – development team has prior
experience with engine

3/16/2016

2

• 375 3D engines
reviewed at
DevMaster.net

• IndieDB shows 470
engines

– Most popular (left)

• We are not going to
try to review them all
here

7

Choices: “It’s a Jungle Out There”

8

Many Evaluation Dimensions/Features
[DevMaster.net]

If there’s a feature term here you don’t know, you should look it up!

Evaluation by Size – Lines of Code

Dragonfly (2015) 5k

id Tech 1 (1999) 79k

id Tech 2 (2001) 138k

id Tech 3 (2005) 329k

id Tech 4 (2011) 586k

UE4 v4.6 (2015) 1964k

“Measuring software productivity by lines of code is like measuring
progress on an airplane by how much it weighs.” - Bill Gates

• Used cloc
• Only counting C, C++ and header files.

Game Engine Architecture

DRAGONFLY
DrawCharacter

InsertObject
LoadSprite

GetKey
MoveObject
SendEvent

GAME CODE
Saucer: hit()
Hero: kbd()

Star: eventHandler()
GameOver: step()

COMPUTER PLATFORM
Allocate memory

Clear display
File open/close
Get keystroke

What are architecture choices for Game Engine layer?

11

Types of Engine Architectures
(Broadly)

• Monolithic (e.g., GameMaker)

• Modular

– Extensible IDE (e.g., Unity, UE4)

– Open Class Library (e.g., C4, UE4,
 or what Dragonfly would be
 when it grows up )

12

Monolithic Engines

• “Old style”- typically grew out of specific game

– e.g., ID Tech for first-person shooters

• Tend to be genre-specific

– e.g., GameMaker for arcade-style games

• Difficult to go beyond extensions/modifications

not anticipated in API (e.g., scripting)

• Proven, comprehensive capabilities

– Good for original purpose

http://devmaster.net/devdb/engines
http://www.indiedb.com/engines
http://cloc.sourceforge.net/

3/16/2016

3

13

Modular Engines

• “Modern” – often developed by game engine
company (relatively new category)

– e.g., Unity

• Use object-oriented techniques for greater
modularity

• Much easier to extend/replace components
than for monolithic engines

14

Modular: Extensible IDE’s

• GUI-oriented development process

– More accessible for novice/casual programmers

– More “art asset friendly”

• Comprehensive asset management

– Integrated with IDE

• Limited (or controlled) exposure of internals

– Prevents abuse

– But also prevents some extensions

15

Modular: Open Class Library

• Code-oriented development

• Carefully layered

• Allows maximum modifiability

• Often open source

– UE4 source available, but not freely distributable

• Not as accessible for novices and “casual”

programmers

Game Engine Architecture Blocks

16

G
am

e
En

gi
n

e
A

rc
h

it
ec

tu
re

 B
lo

ck
s

(c
o

m
p

le
te

?)

Game Engine Architecture, by
Jason Gregory, 2009, AK

Peters, ISBN: 1-5688-1413-5.

G
am

e
En

gi
n

e
A

rc
h

it
ec

tu
re

 B
lo

ck
s

18

http://www.amazon.com/Game-Engine-Architecture-Jason-Gregory/dp/1568814135/

3/16/2016

4

19

Best Engine Choice is Relative to
Situation

• Similar issues of needs, resources and constraints
(as in buy vs. build)

– Platform, programming language constraints

– Cost constraints (commercial run $ to $$$)

– Specific technical features required (e.g., MMO)

– Previous experience of staff

– Support from developers, user community (e.g.,
forums)

– Pedagogical goals (e.g., this course, or even to teach
yourself)

Choice of UE4 for IMGD 4000
• Relatively easy (trivial) for artists

– C4 tough art pipeline, Dragonfly limited

– Comparable to Unity?

• Programming in C++
– Still “gold standard” for tech game development

– Need for IMGD majors to do more, get better

• Full support of mature IDE
– Microsoft Visual Studio (Windows), Xcode (Mac)

• Source code available
– Aid in debugging interactions

– Future offerings may delve into code

20

UE4 in Timeline of FPS Game Engines

http://commons.wikimedia.org/wiki/File:Fpsengine.svg

(Click below to open browser to image for zooming)

21

Feature Comparisons

22

vs vs

• C4 & Unity from DevMaster.net

• UE4 from UE4 Features and other UE4 docs

• Caveats:
– Not complete - broad view of main features touched

upon in IMGD 4000

– Info is not audited (e.g., DevMaster.net from
enthusiasts, UE4 from my knowledge and Epic docs)

– Let’s not get bogged down in the details – the idea is
to get overall sense of emphasis

23

General Features
Object-Oriented Design, Plug-in Architecture, Save/Load System
• Clean class hierarchy for scene graph nodes

• General state serialization support for saving worlds

• Separation between per-instance and shared data

• External scene graph referencing from within another scene graph

• Support for pack files and virtual directory hierarchy

• Skinable GUI's

Object-Oriented Design, Plug-in Architecture, Save/Load System
• Professional FPS controller ready to drop in (and tune)

• Streamed loading for the Unity Web Player

• Unity asset server / asset source code version control

• Cross-platform Web player

• Standalone executables for both Mac OS X and Windows

• Mac OS X Dashboard Widgets

• iPhone Publishing is available as add-on product

• Streaming Asset Bundles: the ability to stream in any asset (terrain, mesh, etc) into the game

Object-Oriented Design, Plug-in Architecture, Save/Load System
• Professional FPS controller ready to drop in (and tune)

• Multiplatform compilation – Windows, Mac, Linux Mobile

• Built-in content and community integration
24

Physics
Basic Physics, Collision Detection, Rigid Body
• Built-in character controller

• Built-in projectile controller

• Real-time fluid surface simulation

• Real-time cloth simulation

Basic Physics, Collision Detection, Rigid Body, Vehicle Physics
• Powered by the PhysX Engine, which also supports particle physics

• Cloth simulation

Basic Physics, Collision Detection, Rigid Body, Vehicle Physics
• Powered by the PhysX Engine, which also supports particle physics

http://commons.wikimedia.org/wiki/File:Fpsengine.svg
http://devmaster.net/devdb/engines
http://www.unrealengine.com/unreal-engine-4

3/16/2016

5

25

Scripting
• Graphical script editor

• Scripts are edited graphically for easy artist/designer access

• Games can easily define custom script components, and these automatically appear in the

 editor

• Controllers can advertise custom function calls that can be accessed from scripts

• Scripts support variables, looping, and conditional execution, all shown in a concise

 graphical manner

• Uses the Mono and supports JavaScript, C# and Boo, interoperable (to a certain extent) and

 JIT'ted to native code

• Complete scripting documentation

• Source-level debugging

• Blueprints visual scripting, easier “programming” for artists and designers

• Live debugging of script code before trying out in game

• Extensible scripting  Objects can link with blueprints to be used in script code

26

Builtin-Editors
• Full-featured integrated cross-platform world editor

• Interface panel editor

• Complete built-in windowing system

• Powerful and intuitive interface design

• Advanced surface attribute manipulation and material management

• Editor provides asset pipeline: save a file and it updates automatically

• Editor Extensibility: Create custom editor windows, and new tools and workflows

• Asset Server that provides version control capabilities for Unity projects

• Optimized for use with large projects

• Updates, commits, and graphical version comparisons inside the Unity editor.

• World editor

• Version control integration – indicates objects that are checked in, out. Can do diffs, etc.

within editor

27

Graphics
Lighting: Per-vertex, Per-pixel, Lightmapping, Radiosity, Gloss maps, Anisotropic:

Texturing: Basic, Multi-texturing, Bumpmapping, Mipmapping, Projected

Shaders: Vertex, Pixel, High Level:

Shadows: Shadow Mapping, Projected planar, Shadow Volume

…

Lighting: Per-vertex, Per-pixel, Lightmapping

Texturing: Basic, Bumpmapping, Procedural

Shaders: Vertex, Pixel, High Level

Shadows: Projected planar

…

Lighting: Lightmapping, Per-pixel,

Texturing: Basic, Bumpmapping

Shaders:

Shadows:

…

28

Networking
Client-Server:
• Fast, reliable network implementation using UDP/IP

• Solid fault tolerance and hacker resistance

• Advanced security measures, including packet encryption

• Automatic message distribution to entity controllers

• Cross-platform internet voice chat

Client-Server:
• Build on Raknet

• Supports .NET library and asynchronous WWW API

• Multiplayer networking (advanced NAT punch-through, delta compression, easy to set up)

 (cf. guest lectures later in term)

Client-Server:
• Communication via RPC

• Reliable and unreliable

• Built in voice support

• Network simulation features (e.g., packet lag, packet loss)

AI

AI system:
• Behavior trees

• Real-time navmesh (pathfinding)

• Environment query tree

AI system?

AI system:
• Real-time navmesh (pathfinding)

