
4/3/2016

1

Basic Game AI

IMGD 4000

With material from: Ian Millington and John Funge. Artificial Intelligence

for Games, Morgan Kaufmann, 2009. (Chapter 5)

What’s AI Part of a Game?

• Everything that isn’t graphics (sound) or

networking... (says an AI professor ☺)

– or physics (though sometimes lumped in)

– usually via non-player characters

– but sometimes operates more broadly, e.g.,

• Civilization-style games (sophisticated simulations)

• interactive storytelling (drama control)

2

“Levels” of Game AI

• Basic

– Decision-making techniques commonly used in almost
all games

• Advanced

– Used in practice, but in more sophisticated games

• Future

– Not yet used, but explored in research

3

This Course

• Basic game AI

– Decision-making techniques commonly used in almost
all games

• Basic pathfinding (A*) (IMGD 3000)

• Decision trees (this deck)

• (Hierarchical) state machines (this deck)

• Advanced game AI

– Used in practice, but in more sophisticated games

• Advanced pathfinding (other deck)

• Behavior trees in UE4 (this deck)

4

Future Game AI?

• Take IMGD 4100

– “AI for Interactive Media and Games”

• Fuzzy logic

• More goal-driven agent behavior

• Take CS 4341

– “Artificial Intelligence”

• Machine learning

• Planning

5

Two Fundamental Types of AI

Algorithms
• Non-Search vs. Search

– Non-Search: amount of computation is predictable
• e.g., decision trees, state machines

– Search: upper bound depends on size of search space
(often large)

• e.g., minimax, planning. Sometimes pathfinding

• Scary for real-time games (or need ways to “short-circuit”, e.g.,
pathfind to closer node)

• Need to otherwise limit computation (e.g., threshold, time-slice
pathfinding)

• Where’s the “knowledge”?
– Non-Search: in the code logic (or external tables)

– Search: in state evaluation and search order functions

– Which one is better? Whichever has better knowledge. ;-)

6

4/3/2016

2

How About AI Middleware (“AI

Engines”)?

• Recent panel at GDC AI Summit: “Why so wary of
AI middleware?”

• Only one panelist reported completely positive
experience
– Steve Gargolinski, Blue Fang (Zoo Tycoon, etc.)

– Used Havok Behavior (with Physics)

• Most industry AI programmers still write their
own AI from scratch (or reuse their own code)
– Damian Isla, Flame in the Flood, custom procedural

content generation

• So, we are going to look at coding details

7

AI Coding Theme (for Basic AI)

• Use object-oriented paradigm

instead of...

• A tangle of if-then-else statements

8

Outline

• Introduction (done)

• Decision Trees (next)

• Finite State Machines (FSM)

• Hierarchical FSM

• Behavior Trees

First Basic AI Technique:

Decision Trees

10

See code at: https://github.com/idmillington/aicore

src/dectree.cpp and src/demos/c05-dectree

Ian Millington and John Funge. Artificial Intelligence

for Games, Morgan Kaufmann, 2009. (Chapter 5)

11

Decision Trees

• Most basic of the basic AI techniques

• Easy to implement

• Fast execution

• Simple to understand

12

Deciding How to Respond to an Enemy

(1 of 2)

if visible? { // level 0
if close? { // level 1

attack;
} else { // level 1

if flank? { // level 2
move;

} else { // level 2
attack;

}
}

} else { // level 0
if audible? { // level 1

creep;
}

}

attack

moveattack

creep

yes

visible?

flank?

close?audible?
no

yes
yes

yes

no

no

no

Leaves are actions

Interior nodes are decisions

Typically binary

(if multiple choices, can be converted to binary)

4/3/2016

3

13

Deciding How to Respond to an Enemy

(2 of 2)

attack

moveattack

creep

yes

visible?

flank?

close?audible?
no

yes
yes

yes

no

no

no

What if need to modify?

e.g., if close, only flank if ally near

if visible? { // level 0
if close? { // level 1

attack;
} else if flank? { // level 1&2

move;
} else {

attack;
}

} else if audible? { // level 0&1
creep;

}

Alternate form.

Harder to see “depth”!

???

if visible? {
if close? {

attack;
} else {

if flank? {
move;

} else {
attack;

}
}

if visible? { // level 0
if close? { // level 1

attack;
} else if flank? { // level 1&2

move;
} else {

attack;
}

} else if audible? { // level 0&1
creep;

}

14

Modifying

Deciding How to Respond to an Enemy

attackcreep

yes

visible?

close?audible?
no

yes
yes

no

no

moveattack

flank?

yesno

???

???
yes

Modification restructures all below code! Code is brittle.

Solution? � Object-Oriented

Alternate form. Harder to see “depth”!

15

O-O Decision Trees (Pseudo-Code)

class Node
def decide() // return action/decision

class Boolean : Decision // if yes/no
yesNode
noNode

class MinMax : Boolean // if range
minValue
maxValue
testValue

def getBranch()
if maxValue >= testValue >= minValue

return yesNode

else

return noNode

yes

no

yesyes

yes

no

no

no

class Decision : Node // interior

def getBranch() // return a node

def decide()
return getBranch().decide()

class Action : Node // leaf
def decide() return this

// Define root as start of tree
Node *root

// Calls recursively until action

Action * action = root � decide()
action � doAction()

16

Building an O-O Decision Tree

visible = new Boolean...
audible = new Boolean...

close = new MinMax...
flank = new Boolean...

attack = new Attack...
move = new Move...
creep = new Creep...

visible.yesNode = close
visible.noNode = audible

audible.yesNode = creep

close.yesNode = attack
close.noNode = flank

flank.yesNode = move
flank.noNode = attack
...

attack

moveattack

creep

yes

visible?

flank?

close?audible?
no

yes
yes

yes

no

no

no

...or a graphical editor

17

Modifying an O-O Decision Tree
visible = new Boolean...
audible = new Boolean...

close = new MinMax...
flank = new Boolean...
??? = new Boolean...

attack = new Action...
move = new Action...

creep = new Action...

visible.yesNode = close

visible.noNode = audible

audible.yesNode = creep

close.yesNode = attack
close.noNode = ???

???.yesNode = flank

flank.yesNode = move

flank.noNode = attack
...

attackcreep

yes

visible?

close?audible?
no

yes
yes

no

no

moveattack

flank?

yesno

???

yes

18

Decision Tree Performance

• Individual node tests (getBranch) typically

constant time (and fast)

• Worst case behavior depends on depth of tree

– longest path from root to action

• Roughly “balance” tree (when possible)

– not too deep, not too wide

– make commonly used paths shorter

– put most expensive decisions late

yes

no

yes
yes

yes

no

no

no

4/3/2016

4

Outline

• Introduction (done)

• Decision Trees (done)

• Finite State Machines (FSM) (next)

• Hierarchical FSM

• Behavior Trees

Second Basic AI Technique:

(Hierarchical) Finite State Machines

20

Finite State Machines

• Often AI as agents: sense, think, then act

• But many different rules for agents

– Ex: sensing, thinking and acting when fighting, running, exploring…

– Can be difficult to keep rules consistent!

• Try Finite State Machine

– Natural correspondence between states and behaviors

– Easy: to diagram, program, debug

• Formally:
– Set of states

– A starting state

– An input vocabulary

– A transition function that maps inputs and current state to next state

(Game example next slide)

Finite State Machines

on guard

run away

fight
small enemy

large enemy
losing fightescaped

22

• Acting done states

• Sensing done by

conditionals

• Thinking done by

transitions

23

Hard-Coded Implementation
class Soldier

enum State
ON_GUARD
FIGHT

RUN_AWAY

currentState

def update()
if currentState == ON_GUARD {

if small enemy {
currentState = FIGHT
start Fighting

} else if big enemy {
currentState = RUN_AWAY
start RunningAway

}
} else if currentState == FIGHT {

if losing fight {

currentState = RUN_AWAY
start RunningAway

}

} else if currentState == RUN_AWAY {
if escaped {

currentState = ON_GUARD

start Guarding
}

}

on guard

run away

fight
small enemy

large enemy

losing fight
escaped

24

Hard-Coded State Machines

• Easy to write (at the start)

• Very efficient

• Notoriously hard to maintain (e.g., modify and

debug)

4/3/2016

5

25

Cleaner & More Flexible O-O

Implementation

class State
def getAction()
def getEntryAction()
def getExitAction()

def getTransitions()

class Transition
def isTriggered()
def getTargetState()

class StateMachine

states
initialState

currentState = initialState

def update() // returns all actions needed this update

triggeredTransition = null

for transition in currentState.getTransitions() {
if transition.isTriggered() {

triggeredTransition = transition
break

}
}

if triggeredTransition != null {
targetState = triggeredTransition.getTargetState()
actions = currentState.getExitAction()
actions += targetState.getEntryAction()
currentState = targetState
return actions // list of actions for transitions

} else return currentState.getAction() // action this state

on guard

run away

fight
small enemy

large enemy

losing fight
escaped

26

Combining Decision Trees & State

Machines (1 of 2)
• Why?

– to avoid duplicating expensive tests in state

machine. e.g., assuming “player in sight” is

expensive

alert

defend

alarm
player in sight AND far

player in sight AND near

27

Combining Decision Trees & State

Machines (2 of 2)

alert

defend

alarm

player in sight?

far?

yes

yes

no

no

Use decision tree for

transitions in state

machine

Outline

• Introduction (done)

• Decision Trees (done)

• Finite State Machines (FSM) (done)

• Hierarchical FSM (next)

• Behavior Trees

29

Hierarchical State Machines

• Why? � Could be interruptions, want to

return but not to start

search

goto

disposal

goto

trash

see trash

trash disposed

have trash

e.g., robot can run out of power in any state.

Needs to recharge when out of power.

When charged, needs to return to previous state

(e.g., may have trash or know where trash is). 30

Interruptions (e.g., Recharging)

search

goto

disposal

goto

trash

see trash

trash disposed

have trash

recharge

low powerrecharged

recharge

low powerrecharged

recharge

low powerrecharged

(search) (trash)

(disposal)

6 states needed � doubled!

4/3/2016

6

31

Add Another Interruption (e.g., Baddies)

12 states needed � doubled again!

hide

battleall clear

(search/recharge)

hide

hide

hide

hide

hide

32

Hierarchical State Machine

search

goto

disposal

goto

trash

see trash

trash disposed

have trash

clean

recharge

low power

recharged

• Leave any state in (composite) “clean” state when “low power”

• “clean” remembers internal state and continues when back from “recharge’’

33

Add Another Interruption (e.g., Baddies)

search

goto

disposal

goto

trash

see trash

trash disposed

have trash

clean

recharge

low power

recharged

hide

battle

all clear

7 states needed (including composite) vs. 12

battle all clear

hide
(recharge)

(clean)

(Note: could have added another layer for only 6 states)

34

Cross-Hierarchy Transitions

• Why?

– Suppose want robot to “top off” battery (even if it

isn’t low) when it doesn’t see any trash

search

goto

disposal

goto

trash

see trash

trash disposed

have trash

clean

recharge

low power

recharged

35

Cross-Hierarchy Transitions

search

goto

disposal

goto

trash

see trash

trash disposed

have trash

clean

recharge

low power

recharged

no trash and less than 75% power

36

HFSM Implementation Sketch
class State

// stack of return states
def getStates() return [this]

// recursive update
def update()

// rest same as flat machine

class Transition

// how deep this transition is
def getLevel()

// rest same as flat machine

struct UpdateResult // returned from update
transition
level
actions // same as flat machine

class HierarchicalStateMachine

// same state variables as flat machine

// complicated recursive algorithm*
def update ()

class SubMachine : HierarchicalStateMachine,
State

def getStates()
push this onto currentState.getStates()

*See full pseudo-code at
http://web.cs.wpi.edu/~imgd4000/d16/slides/millington-hsm.pdf

4/3/2016

7

Outline

• Introduction (done)

• Decision Trees (done)

• Finite State Machines (FSM) (done)

• Hierarchical FSM (done)

• Behavior Trees (next)

– In UE4
http://www.slideshare.net/JaeWanPark2/behavior-tree-in-unreal-engine-4

What is a Behavior Tree?

• A model of plan
execution

– Switch between tasks in
modular fashion

• Similar to HFSM, but
block is task not state

• Early use for NPCs
(Halo, Bioshock, Spore)

• Tree – notes are root,
control flow, execution

Search and grasp plan of

two-armed robot

https://upload.wikimedia.org/wikipedia/commons/1/1b/BT_search_and_grasp.png

“Behavior” in Behavior Tree

• Sense, Think, Act

• Repeat

Sense

Think Act

4/3/2016

8

Behavior Tree with Memory

In UE4, the “Memory” is called “Blackboard”

UE4 Behavior Trees vs. Traditional

• UE4 Event Driven

– Do not poll for changes, but listen for events that

trigger changes

• UE4 “conditionals” not at leaf

– Allows easier distinguish versus task

– Allows them to be passive (event driven)

• UE4 simplifies parallel nodes (typically confusing)

– Simple parallel for concurrent tasks

– Services for periodic tasks

https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html

UE4 Behavior

Tree

(Describe

each next)

UE4 Behavior Tree - Root

UE4 Behavior Tree - Composite

(Describe each next)

Composite - Sequence

“And”

4/3/2016

9

Composite - Selector

“Or”

Composite – Simple Parallel

Service Decorators

Task Blackboard (Memory)

4/3/2016

10

UE4 Behavior Tree Quick Start

“The Behavior Tree Quick Start Guide walks you through the process of creating a

NavMesh, creating an AI Controller, creating a Character that will be controlled by that

AI Controller, and creating all the parts necessary for a simple Behavior Tree.”

https://youtu.be/q6vTg2roI6k

Resource Links

• HFSM from Millington and Funge
http://web.cs.wpi.edu/~imgd4000/d16/slides/millington-hsm.pdf

• FSM from IMGD 3000
– Slides
http://www.cs.wpi.edu/~imgd4000/d16/slides/imgd3000-fsm.pdf

– Header files
http://dragonfly.wpi.edu/include/classStateMachine.html

• UE4 Behavior Tree
– Difference between BT and DT
http://gamedev.stackexchange.com/questions/51693/decision-tree-vs-behavior-tree

– Quick Start
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/QuickStart/

