
1

Sockets

IMGD 4000

Outline

• Socket basics
• Socket details (TCP and UDP)
• Socket options
• Final notes

2

Socket Basics (1 of 2)
• An end-point for an Internet network connection

– what the application layer “plugs into”
User Application

Socket
Operating System
Transport Layer

Internet Protocol Layer
• User sees “descriptor” - integer index or object

handle
– like: FILE *, or file index from open()
– returned by socket() call (more later)
– programmer cares about Application Programming

Interface (API)

Socket Basics (2 of 2)

• End point determined by two things:
– Host address: IP address is Network Layer
– Port number: is Transport Layer

• Two end-points determine a connection:
socket pair
– ex: 206.62.226.35,p21 + 198.69.10.2,p1500
– ex: 206.62.226.35,p21 + 198.69.10.2,p1499

3

Ports
• Numbers (typical, since vary by OS):

– 0-1023 “reserved”, must be root
– 1024 - 5000 “ephemeral”
– Above 5000 for general use

+ (50,000 is specified max)

• Well-known, reserved services (see
/etc/services in Unix):
– ftp 21/tcp

– telnet 23/tcp

– finger 79/tcp

– snmp 161/udp

Transport Layer

• UDP: User Datagram Protocol
– no acknowledgements
– no retransmissions
– out of order, duplicates possible
– connectionless

• TCP: Transmission Control Protocol
– reliable (in order, all arrive, no duplicates)
– flow control
– Connection-based

• While TCP ~95% of all flows and packets,
much UDP traffic is games!

4

Outline

• Socket basics
•Socket details (TCP and UDP)
• Socket options
• Final notes

Socket Details Outline
Unix Network Programming, W. Richard Stevens,
2nd edition, ©1998, Prentice Hall

• Project 3 Links has samples
– C++, Windows and C++, Linux
– Java

• Code is very similar for Windows
• Addresses and Sockets
• TCP client-server (talk-tcp, listen-tcp)
• UDP client-server (talk-udp, listen-udp)
• Misc stuff

– setsockopt(), getsockopt()

– fcntl()

5

Addresses and Sockets

• Structure to hold address information
• Functions pass address from user to OS

bind()

connect()

sendto()

• Functions pass address from OS to user
accept()

recvfrom()

Socket Address Structure
struct in_addr {

in_addr_t s_addr; /* 32-bit IPv4 addresses */
};
struct sockaddr_in {

unit8_t sin_len; /* length of structure */
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* TCP/UDP Port num */
struct in_addr sin_addr; /* IPv4 address (above) */
char sin_zero[8]; /* unused */

}

• Are also “generic” and “IPv6” socket
structures

6

TCP Client-Server
socket()

bind()

listen()

accept()

Server

socket()

connect()

send()

recv()

Client

(Block until connection) “Handshake”

recv()

send()

Data (request)

Data (reply)

close()End-of-File
recv()

close()

“well-known”
port

socket()
int socket(int family, int type, int protocol);

Create a socket, giving access to transport layer
service.

• family is one of
– AF_INET (IPv4), AF_INET6 (IPv6), AF_LOCAL (local Unix),
– AF_ROUTE (access to routing tables), AF_KEY (new, for

encryption)

• type is one of
– SOCK_STREAM (TCP), SOCK_DGRAM (UDP)
– SOCK_RAW (for special IP packets, PING, etc. Must be root)

+ setuid bit (-rws--x--x root 1997 /sbin/ping*)

• protocol is 0 (used for some raw socket
options)

• upon success returns socket descriptor
– Integer, like file descriptor
– Return -1 if failure

7

bind()

• sockfd is socket descriptor from socket()
• myaddr is a pointer to address struct with:

– port number and IP address
– if port is 0, then host will pick ephemeral port

+ not usually for server (exception RPC port-map)
– IP address != INADDR_ANY (unless multiple nics)

• addrlen is length of structure
• returns 0 if ok, -1 on error

– EADDRINUSE (“Address already in use”)

int bind(int sockfd, const struct sockaddr *myaddr,
socklen_t addrlen);

Assign a local protocol address (“name”) to a socket.

listen()

• sockfd is socket descriptor from socket()
• backlog is maximum number of incomplete

connections
– historically 5
– rarely above 15 on a even moderate Web server!

• Sockets default to active (for a client)
– change to passive so OS will accept connection

int listen(int sockfd, int backlog);

Change socket state for TCP server.

8

accept()

• sockfd is socket descriptor from socket()
• cliaddr and addrlen return protocol address from

client
• returns brand new descriptor, created by OS
• note, if create new process or thread, can create

concurrent server

int accept(int sockfd, struct sockaddr
cliaddr, socklen_t *addrlen);

Return next completed connection.

close()

• sockfd is socket descriptor from socket()
• closes socket for reading/writing

– returns (doesn’t block)
– attempts to send any unsent data
– socket option SO_LINGER

+ block until data sent
+ or discard any remaining data

– returns -1 if error

int close(int sockfd);

Close socket for use.

9

TCP Client-Server
socket()

bind()

listen()

accept()

Server

socket()

connect()

send()

recv()

Client

(Block until connection) “Handshake”

recv()

send()

Data (request)

Data (reply)

close()End-of-File
recv()

close()

“well-known”
port

connect()

• sockfd is socket descriptor from socket()
• servaddr is a pointer to a structure with:

– port number and IP address
– must be specified (unlike bind())

• addrlen is length of structure
• client doesn’t need bind()

– OS will pick ephemeral port
• returns socket descriptor if ok, -1 on error

int connect(int sockfd, const struct
sockaddr *servaddr, socklen_t addrlen);

Connect to server.

10

Sending and Receiving
int recv(int sockfd, void *buff, size_t
mbytes, int flags);

int send(int sockfd, void *buff, size_t
mbytes, int flags);

• Same as read() and write() but for flags
– MSG_DONTWAIT (this send non-blocking)
– MSG_OOB (out of band data, 1 byte sent ahead)
– MSG_PEEK (look, but don’t remove)
– MSG_WAITALL (don’t give me less than max)
– MSG_DONTROUTE (bypass routing table)

UDP Client-Server

socket()

bind()

recvfrom()

Server

socket()

sendto()

recvfrom()

Client

(Block until receive datagram)

sendto()

Data (request)

Data (reply)
close()

“well-known”
port

- No “handshake”
- No simultaneous close
- No fork()/spawn() for concurrent servers!

11

Sending and Receiving
int recvfrom(int sockfd, void *buff, size_t mbytes, int

flags, struct sockaddr *from, socklen_t *addrlen);

int sendto(int sockfd, void *buff, size_t mbytes, int
flags, const struct sockaddr *to, socklen_t
addrlen);

• Same as recv() and send() but for addr
– recvfrom fills in address of where packet

came from
– sendto requires address of where sending

packet to

connect() with UDP

• Record address and port of peer
– datagrams to/from others are not allowed
– does not do three way handshake, or connection
– “connect” a misnomer, here. Should be
setpeername()

• Use send() instead of sendto()
• Use recv() instead of recvfrom()
• Can change connect or unconnect by

repeating connect() call
• (Can do similar with bind() on receiver)

12

Why use connected UDP?

• Send two
datagrams
unconnected:
– connect the socket
– output first dgram
– unconnect the

socket
– connect the socket
– ouput second dgram
– unconnect the

socket

• Send two
datagrams
connected:
– connect the socket
– output first dgram
– ouput second dgram

Socket Options

•setsockopt(), getsockopt()
• SO_LINGER

– upon close, discard data or block until sent
• SO_RCVBUF, SO_SNDBUF

– change buffer sizes
– for TCP is “pipeline”, for UDP is “discard”

• SO_RCVLOWAT, SO_SNDLOWAT
– how much data before “readable” via select()

• SO_RCVTIMEO, SO_SNDTIMEO
– timeouts

13

Socket Options (TCP)

• TCP_KEEPALIVE
– idle time before close (2 hours, default)

• TCP_MAXRT
– set timeout value

• TCP_NODELAY
– disable Nagle Algorithm
– won’t buffer data for larger chunk, but sends

immediately

fcntl()

• ‘File control’ but used for sockets, too
• Signal driven sockets
• Set socket owner
• Get socket owner
• Set socket non-blocking
flags = fcntl(sockfd, F_GETFL, 0);
flags |= O_NONBLOCK;
fcntl(sockfd, F_SETFL, flags);

• Beware not getting flags before setting!

14

Concurrent Servers

• Close sock in child, newsock in parent
• Reference count for socket descriptor

Text segment

sock = socket()
/* setup socket */
while (1) {

newsock = accept(sock)
fork()
if child

read(newsock)
until exit

}

Parent
int sock;
int newsock;

Child
int sock;
int newsock;

Project 3: Online Chess

• 1) Start server
• 2) Client A connects

– Client sends handle
– Server sends color

• 3) Client B connects
– Client sends handle
– Server sends color

• 4) Game starts!
• 5) Server sends turn

• 6) If clients turn
– Client sends move
– Server sends OK/Illegal

• 7) Else
– Server sends opponent

move
• 8) When checkmate

– Server sends winner
• 9) Close
• 10) Server returns to

wait for next game

Server Client

