
1

IMGD 3000: Basic Computer Graphics

William DiSanto

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Overview

� Extremely over-simplified view of graphics (60 min)

� Purpose of Computer Graphics in a Game Engine

� Representations of Data

� Geometry

� Light

� Maps

� Rendering

� Courses

Purpose

� A first look at:

� Some kinds of graphical information games require

� Discussion on why some simplifications are made

� Free engines

� Where to find out more

� Some examples in games if we have time

Rendering Equation

� Games/Real Time rendering:

� Find ways to simplify the rendering equation

� Target ~30+ frames per second

� We will glance at a small portion of the devices

used in making game images realistic or at least

appealing.

Rendering Equation

Find the amount of light in some

direction w to some point x on a

surface.

The point x may itself emit light.

Integrate over the hemisphere

surrounding the point x.

Consider, the material at point x

may alter the reflected light in

some way for different pairs of

input and output directions.

Integrate with small

solid angles.

Lambert’s Law

Incoming light for

a direction w’

Some Representations of Data

� Following slides present objects that have the

following attributes:

� All are used in modern games/engines

� Relatively quick and easy to compute

� Can be fitted to real world data within some measure of

accuracy

� Cannot necessarily represent real world data exactly

� For now consider the data to represent some solid object

2

Exact

� Use equations, parametric functions, etc.

� Can be evaluated at arbitrary degree of accuracy

� Remember that your graphics card has limited accuracy

Mesh

� Mesh: connected set of vertices

� Maintained as lists of connections and vertex locations

� Compact and malleable

� Used to establish boundaries in the game world

Subdivision Surface

� Insert new vertices and smooth

Spline

� Splines: interpolate around a set of control points

� Defined parametrically

NURBS / B-Spline

� NURBS/B-Splines

� Local Editing

� Transform Invariant

� Control over continuity

� Well defined derivatives, normals, position

� Some editing techniques are expensive

� Can represent conics

� The NURBS Book

NURBS / B-Spline

3

Frequency

� Decompose data into collection of equivalent

scaled/modified basis functions

� Performance gain for certain operations

� Expensive to represent high detail objects

Radial Basis Function

� Decompose data into collection of equivalent

scaled/modified basis functions at different centers

� Inexpensive

� Can model solid objects, dense objects, fog like media

Density Grid

� Density data contained in a 3D grid

� Many ways to render

Rendered with PBRT

Light Models

� Different ways of representing light sources of different

shape and distance from rendering area.

� Shape can be defined with previously mentioned

representations

� Simplified model of light used to allow faster rendering

Measure of Energy Light

� Typical Simplifying Assumptions:

� Unpolorized

� Sample few wavelengths

� Speed is not considered (considered with refraction)

� Other assumptions where appropriate

4

Propagation of Light

� Rays of light will reflect and refract depending on the

nature of the object they hit

� More rays produced, each go on to reflect and refract

off other surfaces

� Too expensive: reduce number of bounces

Spot + Directional

� Light originates at a point or a infinite plane and moves

in a direction (all rays in directional case are parallel)

Spot Lighting PBRT: Not Real Time

Area Lighting

� Light originates from many locations on a surface

� Many surfaces too complicated to integrate directly

� Sample or average to increase frame rate

Environment Lighting

� Light originates from many locations on a surface

� Many surfaces too complicated to integrate directly

� Sample or average to increase frame rate

Mappings

� OpenGL DirectX support 2D + 3D textures

� Textures can be used to map information to other

objects in ways that can improve rendering efficiency.

� Require the mapped-to object to store map coordinates

� They can be viewed as objects themselves:

� Vertex/index data can be written to texture

� Can be used as flat sprites

� 3D textures as voxel grids (density/opacity)

� Can model any part of the rendering function

Color Texturing

� Set or modify the color of an object

� Map pixels in texture to surface of triangles

5

Bump/Normal Mapping

� Set or modify the normal of an object

Shadow/RSM

� Render scene from perspective of light source

� Use pixels to indicate regions that receive light or

generate indirect illumination

Transformations

� Matrix transformation of:

� Control Points

� Vertices, Normals, directions

� Centers

� Other matrix transforms

� Rotate, Scale, Translate,

Project, …

Animation

� An area of study in its own right.

� Important to CG since animation transformations may

take place on the graphics hardware

� We will ignore that animations:

� Can collide

� Have mass and acceleration

� Limited degrees of translational and rotational freedom

� Etc.

Forward Kinematic

� Compute orientations of the armature

� from the root of the chain to the effector.

http://demonstrations.wolfram.com/ForwardKinematics/

Inverse Kinematic

� Compute orientations of the armature

� from the effector to the root

� Many solutions

http://demonstrations.wolfram.com/InverseKinematics/

6

Projection: Perspective/Ortho

Rays from camera originate at a point

Rays from camera originate at a plane

Perspective Ortho

� Sample the world with rays from the camera

Rendering

� Sample the world over a given interval

� Select w rays along which light energy is integrated

� Combine observations together with other effects

� Camera lenses distortion

� Focus/blur

� Pretty much anything from image processing

Graphics Pipeline

� Broken into stages: some controlled by shader programs

Free Engines

� Ogre

� Unity (to some degree)

� Blender

Miscellaneous

� Real time graphics is becoming increasingly

influenced by physical models

� Most convincing renders are computed with

information taken from experiment

� Graphics hardware has progressed to the point were

some ray-trace scenes are realizable with at least

interactive frame rates

CryENGINE: LPV, SSAO

7

What was Missed?

� How to do any of these things

� How to do them in an efficient manner

� How to program with OpenGL or DirectX

� How to program shaders

� Any ray casting techniques

� A whole lot more…

Graphics Oriented Classes

� CS 4731 Computer Graphics

� CS 545 Digital Image Processing

� CS 549 Computer Vision

� CS 563 Advanced Computer Graphics

� Courses will generally focus on aspects graphics itself rather

than graphics as it applies to games in particular.

References

� Wan, L., Wong, T.‐T., and Leung, C.‐S. (2007).

Isocube: Exploiting the Cubemap Hardware. IEEE

Transactions on Visualization and Computer

Graphics, 13(4):720–731.

� Michael Kazhdan , Thomas Funkhouser , Szymon

Rusinkiewicz, Rotation invariant spherical harmonic

representation of 3D shape descriptors, Proceedings

of the 2003 Eurographics/ACM SIGGRAPH

symposium on Geometry processing, June 23‐25,

2003, Aachen, Germany

References

� Carsten Dachsbacher , Jan Kautz, Real‐time global

illumination for dynamic scenes, ACM SIGGRAPH 2009

Courses, p.1‐217, August 03‐07, 2009, New Orleans,

Louisiana

� http://en.wikipedia.org/wiki/Inertial_frame_of_refere

nce (figure of reference frames)

� https://developer.apple.com/library/mac/#document

ation/graphicsimaging/conceptual/OpenGL-

MacProgGuide/opengl_shaders/opengl_shaders.html

(shader pipeline image)

References

� Kaplanyan, A. (2009). Light propagation volumes in

cryengine 3.

� The CG Tutorial

by Randima Fernando and Mark J. Kilgard

� Physically Based Ray Tracing

by Matt Pharr and Greg Humphreys

� Real Time Rendering

By Tomas Akenine‐Möller, Eric Haines and Naty Hoffman

