
10/7/2012

1

Performance Tuning

The Need for Tuning (1 of 2)

• You don’t need to tune your code!

• Most important � Code that works

• Most important � Code that is clear, readable

– It will be re-factored

– It will be modified by others (even you!)

• Less important � Code that is efficient, fast

– Is performance really the issue?

– Can a hardware upgrade fix performance problems?

– Can game design fix performance problems?

• Ok, so you do really need to improve performance

– All good game programmers should know how to …

The Need for Tuning (2 of 2)

• In most large games, typically small amount of
code uses most CPU time (or memory)
– Good programmer knows how to identify such code

– Good programmer knows techniques to improve
performance

• Questions you (as a good programmer) may want
answered:
– How slow is my game?

– Where is my game slow?

– Why is my game slow?

– How can I make my game run faster?

Steps for Tuning Performance

• Measure performance

– Timing and profiling

• Identify “hot spots”

– Where code spends the most time/resources

• Apply techniques to improve performance

– Tune

• Re-evaluate

Outline

• Introduction (done)

• Timing (next)

• Benchmarks

• Profiling

• Tuning

• Summary

Time Your Game
• /usr/bin/time (Windows has timeit.exe)

• Elapsed: Wall-clock time from start to finish

• User: CPU time spent executing game

• System: CPU time spent within OS game’s behalf

• CPU: Percent time processing vs blocked for I/O

• Useful, since provides a guideline for user-code (that
can be optimized) and general processing/waiting
– However, I/O accounting isn’t always accurate

• But … which parts are most time consuming?

claypool 54 fulham% /usr/bin/time saucer-shoot

2:24.04 elapsed (minutes:seconds)

13.26 user (seconds)

2.74 system (seconds)

11% CPU

10/7/2012

2

Time Parts of Your Game

• Call before and after
start = getTime()

// do stuff

stop = getTime()

elapsed = stop - start

• (Where did we do this before?)

• Use Dragonfly Clock
– Remember, this is not a singleton

• E.g.
clock.delta() // start timer

Pathfind() // do stuff

elapsed = clock.delta() // compute elapsed

Outline

• Introduction (done)

• Timing (done)

• Benchmarks (next)

• Profiling

• Tuning

• Summary

Benchmark

• Benchmark – a program to assess relative performance
– e.g. Compare ATI and NVIDIA video cards

– e.g. Compare Google Chrome to Mozilla Firefox

• A “good” benchmark will assess performance using typical
workload
– Getting “typical” workload often difficult part

• Use benchmark to compare performance before and after
performance. e.g.
– Run benchmark on Dragonfly � old

– Tune performance

– Run benchmark on Dragonfly � new

– Is new better than old?

• What is a good benchmark for Dragonfly? What should it
do?

Bounce – What is it?

• A benchmark designed to estimate Dragonfly
performance
– Primarily dependent upon number of objects can support

at target frame rate

• Assumes “standard” game creates many objects that
move and interact
– Bounce stresses Dragonfly by creating many objects that

move and collide

• When Dragonfly can’t keep up, has reached limit

• Record value – provides basis for comparison
– Compare other systems (e.g. faster processor), engine

improvements (e.g. scene graph)

o
o
o

o

Screenshot/Demo

Steps to use

1. Download from Web

page

2. Compile

(Modify Makefile to point to

Dragonfly)

3. Run

http://www.youtube.com/watch?v=8

2GGLjyz3lY&feature=youtu.be

o
o
o

o Bounce Details

• Balls random speed (0.1 to 1 spaces/step) and direction

• Balls solid, so collide with other objects and screen edge

• Start � 0 Balls

• Each step � Create one ball
– So, about 30/second

• Record frame time for latest 30 steps
– So, about 1 second of time

• Compute median

• If median 10% over target frame time (33 ms) , stop
iteration

• Record number of Balls created

• After three iterations � average Balls/iteration is max
objects (bounce-mark)

o
o
o

o

(Show code: Ball, Bouncer, bounce)

10/7/2012

3

Bounce Data (1 of 2)

• grep BOUNCE dragonfly.log

o
o
o

o

05:29:36 BOUNCE: Frame 1 - 33 of 33 msec (median is 0)

05:29:36 BOUNCE: Frame 2 - 33 of 33 msec (median is 0)

05:29:36 BOUNCE: Frame 3 - 33 of 33 msec (median is 0)

…

05:30:30 BOUNCE: Frame 1634 - 34 of 33 msec (median is 33)

05:30:30 BOUNCE: Frame 1635 - 34 of 33 msec (median is 34)

05:30:30 BOUNCE: Frame 1636 - 37 of 33 msec (median is 34)

05:30:30 BOUNCE: Frame 1637 - 33 of 33 msec (median is 33)

…

05:32:34 BOUNCE: Frame 1772 - 38 of 33 msec (median is 36)

05:32:34 BOUNCE: Frame 1773 - 39 of 33 msec (median is 37)

05:32:34 BOUNCE: Iteration 3 - max objects: 1773

05:32:34 BOUNCE: Done. Average max objects: 1780

Bounce - a Dragonfly Benchmark (v1.0)

** Average maximum number of objects (bounce-mark): 1803 **

Bounce Data (2 of 2)

System

Intel I5-2500, 3.30 GHz

8GB RAM

Windows 7 64-bit, Service Pack 1

Cygwin

o
o
o

o

Bounce Results
• 61x20 squares. Dependent upon resolution?

– 2400x1250 pixels � 360 objects

– 500x300 pixels �353 objects

• 290x100 squares. Dependent upon squares?

– ~2400x1250 pixels �331

– ~500x300 pixels �350

• May want to take minimum bounce-mark. Or,
may want take “typical” setup. Or, may want
your setup.

– Will definitely want setup that meets target
specifications!

o
o
o

o Bounce – What Does it Mean?

• Provides target maximum number of moving objects
Engine can support

• Note, game-code computations “cost”, too, so will decrease
max

• Note, if single moving object, can support about n2 as many
objects (e.g. Walls)

• In general:

B = estimated maximum reported by Bounce

M = number of moving objects

S = number of static (non-moving) objects

Need � M * (M + S) <= B2

• Note, this could be refined with “velocity” for more
accuracy (and more complications)

o
o
o

o

How to Use for Planning
• Say Bounce reports 500 objects for target setup (B = 500)

• Making game, say a maze runner
– 100x100 walls

– Hero and up to 10 bad guys

– Can Dragonfly support?

– M = 11, S = 10000
� 11 * (11 + 10000) <= 500*500 ?

� 110,121 <= 250,000 (yes)

• Say 10x bigger world. And bullets, up to 50 “in flight” during firefight
– Can Dragonfly support?

– M = 61, S = 100000

– � 61 * (61 + 100000) <= 250000

– � 6,103,721 <= 250,000 (no)

• What to do?
– Tune code (more later)

– Design differently
• Don’t spawn bad guys until Hero can see them

• Make levels smaller (but have more of them)

• Make sections of walls combined � multiple objects to one

• Reduce movement speed / fire rate

M * (M + S) <= B2

o
o
o

o Outline

• Introduction (done)

• Timing (done)

• Benchmarks (done)

• Profiling (next)

• Tuning

• Summary

10/7/2012

4

Profiling
• Why?
– Learn where program spent time executing

• Which functions called

– Can help understand where complex program spends
its time

– Can help find bugs

• How?
– Re-compile so every function call records some info

– After running, profiler figures out what called, how
many times

– Also, takes samples to see where program is (about
100/sec)
• Keeps histogram

gprof

• GNU profiler
– Linux, and can install with cygwin, too

• Works for any language GNU compiler supports: C, C++, Objective-
C, Java, Ada, Fortran, Pascal …
– For us � g++

• Broadly, after profiling, outputs: flat profile and call graph

• Flat profile provides overall “burn” perspective
– How much time program spent in each function

– How many times function was called

• Call graph shows individual execution profile for each function
– Which functions called it

– Which other functions it called

– How many times

– Estimate how much time in subroutines of each function

http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf

Running gprof

1) Compile with –pg flag
– Need for creating all .o files

– And need when linking!

2) Run program normally
– Produces file “gmon.out” (overwritten if there)

– Note, program must exit normally! (e.g. via exit() or
return from main())

3) Run gprof on program
– Uses data from gmon.out

– Often, redirect to file via ‘>’

4) Analyze output

Example - Bounce

• Compile

• Run

• Profile

• Analyze

g++ -c –pg -I../../dragonfly Ball.cpp -o Ball.o

g++ -c –pg -I../../dragonfly Bouncer.cpp -o Bouncer.o

g++ bounce.cpp Ball.o Bouncer.o libdragonfly.a –pg -o

bounce -lncurses -lrt

./bounce

gprof bounce > out

(emacs or vi or pico or less) out

Gprof – Flat Profile (e.g. QuickSort)

Explanations

• Each line describes one function

• name: name of function

• %time: percentage of time spent exececuting

• cumulative seconds: total time spent

• self seconds: time spent executing

• calls: number of times function called

(excluding recursive)

• self s/call: avg time per exec (excluding

descendents)

• total s/call: avg time per exec (including

descendents)

Observations

• swap() called many times, but each

fast
� consumes only 9% of overall time

• partition() called many times, fast
� consumes 85% of overall time

Conclusions

• Improve performance �make

partition() faster

• Don’t try to make fillArray() or

quicksort() faster

Gprof – Call Graph Profile

• Each section describes one function
– Which functions called it, and how much time was consumed

– Which functions it calls, how many times, and for how long

• Usually overkill � we won’t look at it in too much detail

10/7/2012

5

Example - Bounce% cumulative self

time seconds seconds calls name

29.89 0.52 0.52 15986054 boxIntersectsBox(Box, Box)

16.09 0.80 0.28 303902763 Position::~Position()

12.07 1.01 0.21 206448124 Box::getCorner()

6.90 1.13 0.12 15986054 getWorldBox(GameObject*)

6.32 1.24 0.11 73253 WorldManager::isCollision(GameObject *, Pos)

5.17 1.33 0.09 127780828 Position::getY()

4.02 1.40 0.07 31676507 Box::getVertical()

2.87 1.45 0.05 16176361 ObjectListIterator::next()

2.87 1.50 0.05 79953 ObjectList::ObjectList()

1.72 1.53 0.03 127781828 Position::getX()

1.72 1.56 0.03 48402042 Box::~Box()

1.72 1.59 0.03 16059309 Box::setCorner(Position)

1.72 1.62 0.03 16059307 Object::getBox()

1.15 1.64 0.02 32122197 Object::getPosition()

1.15 1.66 0.02 31674366 Box::getHorizontal()

1.15 1.68 0.02 16064131 Position::setX(int)

1.15 1.70 0.02 16060277 Position::setY(int)

0.57 1.71 0.01 16266646 ObjectListIterator::isDone()

0.57 1.72 0.01 16176361 ObjectListIterator:currentObject()

0.57 1.73 0.01 186921 WorldManager::getInstance()

0.57 1.74 0.01 73253 SceneGraph::solidGameObjects()

0.00 1.74 0.00 361538 WorldManager::getView()

0.00 1.74 0.00 312676 getVelocityStep(float&, float&)

0.00 1.74 0.00 280748 Position::Position(int, int)

0.00 1.74 0.00 179804 worldToView(Position)

0.00 1.74 0.00 179804 GraphicsManager::drawCh()

Each is a sample taken every 0.01 seconds � 1319 samples (more later)

Example – Saucer Shoot

% cumulative self

time seconds seconds calls name _

20.00 0.06 0.06 29179995 Position::~Position()

20.00 0.12 0.06 1265573 boxIntersectsBox(Box, Box)

16.67 0.17 0.05 29255 ObjectList::ObjectList()

10.00 0.20 0.03 1275432 getWorldBox(GameObject*)

6.67 0.22 0.02 16743168 Box::getCorner()

3.33 0.23 0.01 12840584 Position::getX()

3.33 0.24 0.01 2247840 Box::getVertical()

3.33 0.25 0.01 1297989 Object::getBox()

3.33 0.26 0.01 755020 worldToView(Position)

3.33 0.27 0.01 58662 ObjectListIterator::~ObjectListIterator()

3.33 0.28 0.01 27206 WorldManager::moveGameObject()

3.33 0.29 0.01 22555 WorldManager::isCollision()

3.33 0.30 0.01 2025 WorldManager::draw()

0.00 0.30 0.00 12376988 Position::getY()

Example – Bounce (call graph)

[1] 100.0 0.00 2.12 main [1]

0.00 2.12 1/1 GameManager::run() [3]

0.00 0.00 1/1 GameManager::startUp() [40]

0.00 0.00 1/1 Bouncer::Bouncer() [41]

0.00 0.00 1/1 GameManager::shutDown() [46]

0.00 0.00 1/2 GameManager::getInstance() [107]

0.00 2.12 1/1 GameManager::run() [3]

[2] 100.0 0.00 2.12 1 GameManager::run(int) [2]

0.00 2.08 975/975 WorldManager::update() [4]

0.01 0.03 976/976 WorldManager::draw() [18]

0.00 0.00 1/162708 WorldManager::getInstance() [42]

0.00 0.00 1950/2925 Clock::delta() [74]

0.00 0.00 976/976 GraphicsManager::swapBuffers() [88]

0.00 0.00 975/975 InputManager::getInput() [91]

0.00 0.00 138/1132 LogManager::writeLog(char const*, ...) [80]

0.00 0.00 1/159811 GraphicsManager::getInstance() [56]

0.00 0.00 1/3 InputManager::getInstance() [106]

0.00 0.00 1/1610 LogManager::getInstance() [76]

0.00 0.00 1/2 Clock::Clock() [110]

Total time in

function or children

(percent)

Time in

function

Total time in

function or children

(percent)

Function name

Number of

times called

Additional Options

• ‘-A’ to annotate code

• ‘-l’ to profile by lines, not functions

366 -> int Sprite::getHeight() {

return height;

}

6 -> void Sprite::setHeight(int new_height) {

height = new_height;

}

5300 -> int Sprite::getFrameCount() {

return frame_count;

}

Using Profiling (1 of 2)

• Determine where to optimize
– Pick the bottleneck and make more efficient

– This provides most “bang for the buck” (buck = time, often!)

• E.g.
– Program takes 10 seconds to execute

– Function A() takes 10% of the time

– Make A() 90% more efficient!

– How long does program take? � 9.1 seconds

– Function B() takes 90% of the time

– Instead of working on A(), make B() 50% more efficient!

– How long does program take? � 5.5 seconds

• Bottleneck will then move � this is ok and expected
– Repeat, as needed

Using Profiling (2 of 2)

• Warning! Just because bottleneck moves does not mean
performance is improving!

• E.g. Say boxIntersectsBox() is bottleneck
– Could alleviate by checking distance between objects before doing

boxesIntersect()

– Then boxIntersectsBox() called less often would be small

– But, distanceObjects() now huge!

– Is this better? Could be � but only if distance test “cheaper” than
intersection test

• Can’t make code more efficient (e.g. library)? � may be able to
redesign game
– Q: Consider Mario-type platformer that “can’t keep up”. How to

redesign to improve performance?

– A: make levels smaller

– A: spawn/move objects only when Hero is near

– A: perhaps new type of object – “platform” for movement?

10/7/2012

6

Statistical Inaccuracies (1 of 3)

• Count of function calls is accurate

• Time/percent for function calls may not be � they
sampled

• Samples only during run-time
– So, if game waiting on I/O (say, file or input) won’t show up

even if it caused big I/O

• Beware that periodic samples may exactly miss some
routines

• Observer effect – by observing behavior of program,
we change it
– This is true for almost any measurements

– Certainly true for profiling

Statistical Inaccuracies (2 of 3)

• Actual error larger than one sampling period

• The more samples, the larger the cumulative error

• Guideline: value n times sampling period �expected error
is square-root of n sampling periods
– Say, 0.5 seconds for GameObjectListItrtr::isDone()

– Sample period is 0.01 seconds, so 50 times as large

– So, average error is sqrt(50) = ~7 sample periods � 0.07
seconds (maybe more)

• Note, small run-time (less than sample period) could still be
useful
– E.g. Program's total run-time large, then small run-time for one

function says that function used little of whole � not worth
optimizing

Statistical Inaccuracies (3 of 3)

• To get more accuracy, run program longer

• Or, combine data from several runs

1. Run program once (e.g. a.out)

2. Move “gmon.out” to “gmon.sum”

3. Run program again

4. Merge:
gprof -s a.out gmon.out gmon.sum

• Repeat steps 3 and 4, as needed

• Combine the cumulative data then analyze:
gprof a.out gmon.sum > output-file

Outline

• Introduction (done)

• Timing (done)

• Benchmarks (done)

• Profiling (done)

• Tuning (next)

• Summary

Tuning (1 of 4)

• Can choose better algorithms or data structures

– Mergesort instead of Quicksort?

– Linked List instead of Array?

• Compiler optimizations

– gcc –Ox
• X from 1 to 3, with some to more optimizations

• man gcc, for details

• Unroll loops (compiler optimizations sometimes do this
automatically)

• Re-write in assembly (but many compilers excellent)

• Inline function calls

Tuning (2 of 4)

• Better memory efficiency

– Memory is cheap, so not reduce memory for cost

– Rather, reduce use for performance � less access
often means keeping CPU busier

– Keep locality of reference to improve performance

• Pointers tend to scatter locality

• Arrays preserve locality

– Use smaller data structures if possible

• E.g. short instead of int

• E.g. smaller max size on arrays

– Compiler option -Os (for size optimization)

10/7/2012

7

Tuning (3 of 4) – Multi-threading
• Many modern CPU’s have multiple cores

– Can think of each as a separate CPU

• Great if doing 2 independent tasks at once
– E.g. surfing web while playing music

• Potential speedup is enormous (e.g. 4 core CPU may run up to 4
times faster or support 4 times as many objects)

• How to take advantage of for single application (e.g. game)?
– Concurrency through multi-threading

• How to this?
– Easy on the surface (see right)

• So, what’s the problem?
– Need to share data

– Thread execution order not deterministic

– Threads need to synchronize

int a[max];

void DoStuff() {

for (int i=0; i<max; i++)

a[i] = i;

}

main() {

beginThread(DoStuff);

for (int i=0; i<max; i++)

a[i] = max - i;

}

Tuning (4 of 4) – Multi-threading

• Could partition tasks

– e.g. Half of array for each thread

• Could “lock” data when using

– But wastes CPU time when other thread waiting

• Threading best speedup for independent tasks

that minimize thread synchronization

• In Dragonfly, would multithreading help? How

would you implement it?

Final Notes

• Improving performance is not the first task of a
programmer. Nor the second. Nor the third. In fact, it
might never be a task!

• Correctly working code is more important than
performance

• Code clarity is more important the performance

• Don’t improve performance unless you have to!

• Improving performance is not the last task of a programmer
– You must test thoroughly after tuning � may introduce bugs!

• However, when performance becomes the last obstacle
between a working, playable, fun game -� you better
know how
– Requires “deep” technical knowledge

Summary

• Tune performance when necessary
– (Are there easier solutions to the problem?)

• Need measures of performance to gauge potential
improvements
– Timing

– Benchmarks

– Profile sections of code

• Identify bottlenecks where most time spent
– That is where improvements should be targeted

• Apply techniques to improve performance
– Data structures, algorithms, compiler optimizations,

multithreading …

– Pick the right tool for the job!

• Re-test when done

