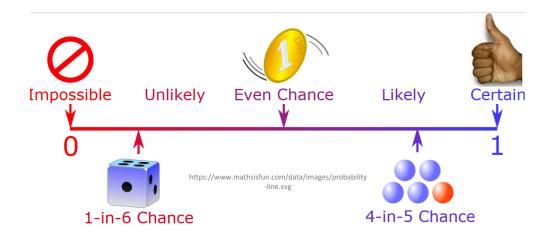
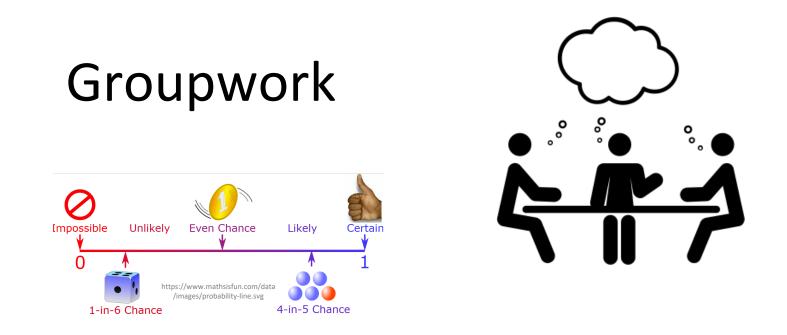

IMGD 2905


Probability


Chapters 4 & 5

Overview

- Statistics important for game analysis
- Probability important for statistics
- So, understand some basic probability
- Also, probability useful for game development

- What are some examples of probabilities needed for game development?
- Provide a specific example
- Icebreaker, Groupwork, Questions
 <u>https://web.cs.wpi.edu/~imgd2905/d24/groupwork/5-probabilities/handout.html</u>

Overview

- Statistics important for game analysis
- Probability important for statistics
- So, understand some basic probability
- Also, probability itself useful for game development

- Probabilities for game development?
- Examples?

Overview

- Statistics important for game analysis
- Probability important for statistics
- So, understand some basic probability
- Also, probability itself useful for game development

- Probabilities for game development?
- Probability attack will succeed
- Probability loot from enemy contains rare item
- Probability enemy spawns at particular time
- Probability action (e.g., building a castle) takes particular amount of time
- Probability players at server

Outline

- Introduction
- Probability
- Probability Distributions

(done) (<mark>next</mark>)

Probability Definitions (1 of 3)

- Probability way of assigning numbers to outcomes to express likelihood of event
- Event outcome of experiment or observation
 - Elementary simplest type for given experiment. independent
 - Joint/Compound more than one elementary

The probability of the spinner landing on blue

even chance ve

very likely

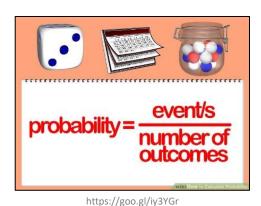
- Roll die (d6) and get 6
 - elementary event
- Roll die (d6) and get even number
 - compound event, consists of elementary events 2, 4, and 6
- Pick card from standard deck and get queen of spades
 - elementary event
- Pick card from standard deck and get face card
 - compound event
- Observe players logging in to MMO server and see if two people log in less than 15 minutes apart
 - compound event

We'll treat/compute probabilities of elementary versus compound separately

Probability – Definitions (2 of 3)

- Exhaustive set of events

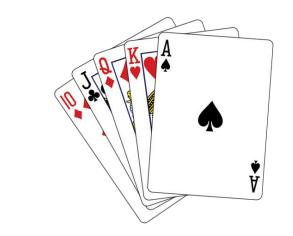
 set of all possible outcomes of experiment/observation
- Mutually exclusive sets of events – elementary events that do not overlap
- Roll d6: Events: 1, 2
 - not exhaustive, mutually exclusive



• Roll d6: Events: 1, 2, 3, 4, 5, 6

- exhaustive, mutually exclusive
- Roll d6: Events: get even number, get number divisible by 3, get a 1 or get a 5
 - exhaustive, but overlap
- Observe logins: time between arrivals <10 seconds, 10+ and <15 seconds inclusive, or 15+ seconds
 - exhaustive, mutually exclusive
- Observe logins: time between arrivals <10 seconds, 10+ and <15 seconds inclusive, or 10+ seconds
 - exhaustive, but overlap

Probability – Definitions (3 of 3)


 Probability – likelihood of event to occur, ratio of favorable cases to all cases

- Set of rules that probabilities must follow
 - Probabilities must be between 0 and 1 (but often written/said as percent)
 - Probabilities of set of *exhaustive*, *mutually exclusive* events must add up to 1
- e.g., d6: events 1, 2, 3, 4, 5, 6. Probability of 1/6th to each, sum of P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1
 → legal set of probabilities
- e.g., d6: events 1, 2, 3, 4, 5, 6. Probability of ½ to roll 1, ½ to roll 2, and 0 to all the others sum of P(1) + ... + P(6) = 0.5 + 0.5 + 0 ... + 0 = 1
 - ightarrow Also legal set of probabilities
 - Not how honest d6's behave in real life!

Q: how to assign probabilities?

How to Assign Probabilities?

Probability. Rules

http://static1.squarespace.com/static/5a14961cf14aa1f245bc39 42/5a1c5e8d8165f542d6db3b0e/5acecc7f03ce64b9a46d99c6/1 529981982981/Michael+Jordan+%2833%29.png?format=1500w

Assigning Probabilities

- Classical (by theory)
 - In some cases, exhaustive, mutually exclusive outcomes equally likely → assign each outcome probability of 1/n
 - e.g., *d6*: 1/6, *Coin*: prob heads ½, tails ½, *Cards*: pick Ace 4/52
- Empirically (by observation)
 - Obtain data through measuring/observing
 - e.g., Watch how often people play PUBG in FL222 versus some other game. Say, 30% PUBG. Assign that as probability
- Subjective (by hunch)
 - Based on expert opinion or other subjective method
 - e.g., eSports writer says probability Fnatic (European LoL team) will win World Championship is 25%

Rules About Probabilities (1 of 2)

- Complement: A an event. Event "Probability A does not occur" called *complement* of A, denoted A'
 - $P(A') = 1 P(A) \leftarrow Why?$
 - e.g., d6: P(6) = 1/6, complement is P(6') and probability of "not 6" is 1-1/6, or 5/6
 - Note: Value often denoted p, complement is q
- Mutually exclusive: Have no simple outcomes in common – can't both occur in same experiment P(A or B) = P(A) + P(B)
 - "Probability either occurs"
 - e.g., d6: P(3 or 6) = P(3) + P(6) = 1/6 + 1/6 = 2/6

Rules About Probabilities (2 of 2)

- Independent: Probability that one occurs doesn't affect probability that other occurs
 - e.g., 2d6: A= die 1 get 5, B= die 2 gets 6. Independent, since result of one roll doesn't affect roll of other
 - "Probability both occur" $P(A \text{ and } B) = P(A) \times P(B)$
 - e.g., 2d6: prob of "snake eyes" is P(1) x P(1) = 1/6 x 1/6 = 1/36
- Not independent: One occurs affects probability that other occurs
 - Probability both occur $P(A \text{ and } B) = P(A) \times P(B \mid A)$

- Where P(B | A) means prob B given A happened
- e.g., PUBG chance of getting top 10 is 10%. Chance of using only stock gun 50%. You might think that:
 - P(top 10) x P(stock) = 0.10 x 0.50 = 0.05

But likely *not* independent. P(top | stock) < 5%. So, need nonindependent formula

P(top) x P(top | stock)

- Probability drawing King?
 P(K) = ¼
- Draw, put back. Now?
 P(K) = ¼
- Probability *not* King? P(K') = 1-P(K) $= 1 - \frac{1}{4} = \frac{3}{4}$
- Draw, put back. 2 Kings?
 P(K) x P(K)
 = ¼ x ¼ = 1/16
- Draw. King or Queen? P(K or Q) = P(K) + P(Q) $= \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

Probability Example

• Draw, put back. Draw. Not King either card?

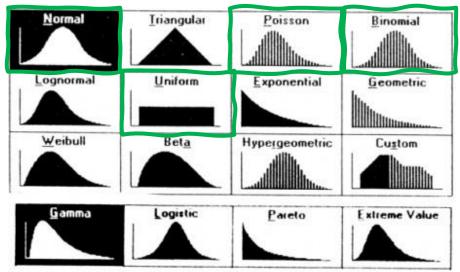
P(K') x P(K') = ³⁄₄ x ³⁄₄ = 9/16

• Draw, *don't* put back. Draw. Not King either card?

 $P(K') \times P(K' | K')$ = ³/₄ x (1-1/3) = ³/₄ x 2/3 = 6/12 = ¹/₂

Draw, don't put back. Draw. King 2nd card?

 $P(K') \times P(K | K')$ $= \frac{3}{4} \times \frac{1}{3}$ $= \frac{3}{12} = \frac{1}{4}$

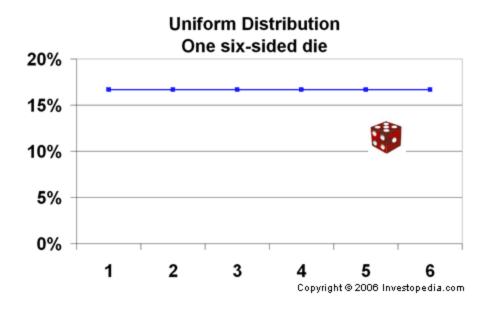

Outline

- Intro
- Probability
- Probability Distributions

(done) (done) (next)

Probability Distributions

- Probability distribution values and likelihood (expected value) that random variable can take
- Why? If can model mathematically, can use to predict occurrences
 - e.g., probability slot machine pays out on given day
 - e.g., probability game server can host player this hour
 - e.g., probability certain game mode is chosen by player
 - Also, some statistical techniques for some distributions only



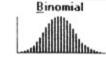
https://goo.gl/jqomFl

Types discussed: Uniform (discrete) Binomial (discrete) Poisson (discrete) Normal (continuous)

Remember empirical rule? What distribution did it apply to?

Uniform Distribution

Mean = (1 + 6) / 2 = 3.5Variance = $((6 - 1 + 1)^2 - 1)/12$ = 2.9 Std Dev = sqrt(Variance) = 1.7


Note – mean is also the expected value (if you did a lot of trials, would be average result)

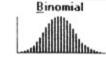
"So what?"

 Can use known formulas

Uniform

Mean	$rac{a+b}{2}$	
Median	$rac{a+b}{2}$	
Mode	N/A	
Variance	$rac{(b-a+1)^2-1}{12}$	

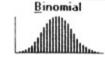
Binomial Distribution Example (1 of 3)

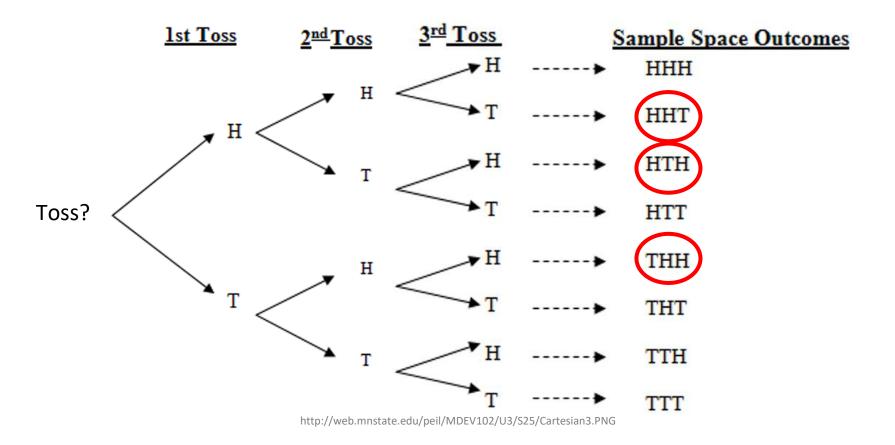

- Suppose toss 3 coins
- Random variable

X = number of heads

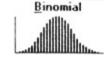
 Want to know probability of *exactly* 2 heads
 P(X=2) = ? How to assign probabilities?

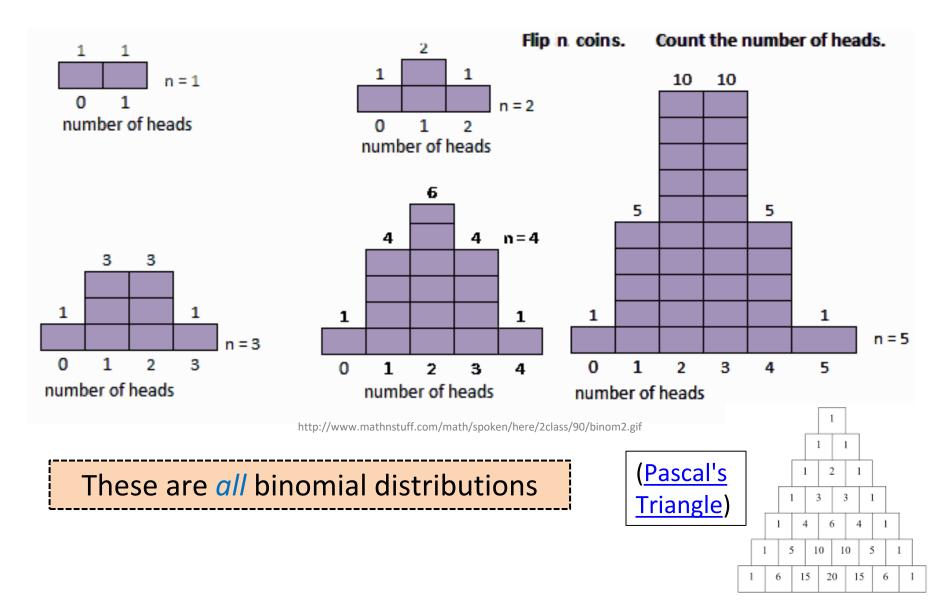
Probability Rules

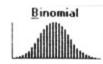

Binomial Distribution Example (1 of 3)

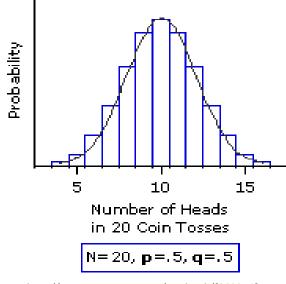

- Suppose toss 3 coins
- Random variable
 - X = number of heads
- Want to know probability of *exactly* 2 heads
 P(X=2) = ?

How to assign probabilities?


- Could *measure* (empirical)
 Q: how?
- Could use "hunch" (subjective)
 - Q: what do you think?
- Could use theory (classical)
 - Math using our probability rules (not shown)
 - Enumerate (next)


Binomial Distribution Example (2 of 3)


All equally likely (p is 1/8 for each) \rightarrow P(HHT) + P(HTH) + P(THH) = 3/8 Can draw histogram of number of heads

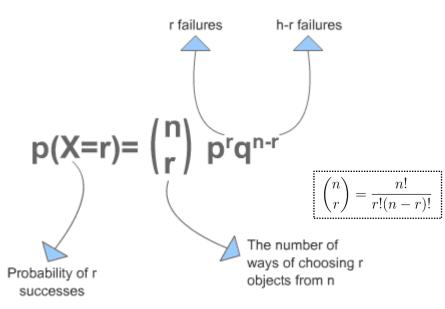

Binomial Distribution Example (3 of 3)

Binomial Distribution (1 of 2)

 In general, any number of trials (n) & any probability of successful outcome (p) (e.g., coin heads p=0.5, d8 one p=0.125)

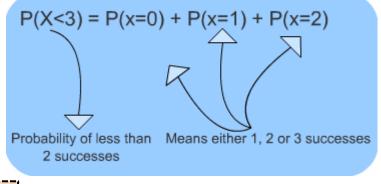
http://www.vassarstats.net/textbook/f0603.gif

- Characteristics of experiment that gives random number with binomial distribution:
 - Experiment of n identical trials
 - Trials are independent
 - Each trial only two possible outcomes, Success or Fail
 - Probability of Success each trial is same, denoted p
 - Random variable of interest
 (X) is number of Successes in
 n trials


Binomial Distribution (2 of 2)

Binomial

"So what?"

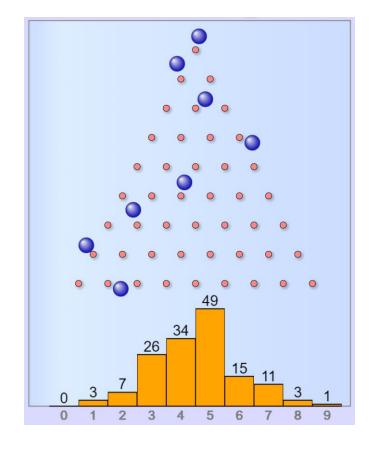

Can use known formulas

MEAN :
$$\mu = np$$

Variance : $\sigma^2 = npq$
SD : $\sigma = \sqrt{npq}$

http://www.s-cool.co.uk/gifs/a-mat-sdisc-dia08.gif

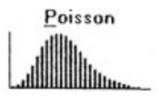
Excel: binom.dist() binom.dist(x,trials,prob,cumulative) 2 heads, 3 flips, coin, discrete =binom.dist(2, 3, 0.5, FALSE) =0.375 (i.e., 3/8)



http://www.s-cool.co.uk/gifs/a-mat-sdisc-dia12.gif

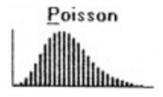
Binomial Distribution Example

- "Galton Board" (Sir Francis Galton): Each row is like a coin flip right = "heads" left = "tails"
- Bottom axis is number of heads
- Gives an *empirical* way to estimate P(X) bin(X) ÷ sum(bin(0) + bin(1) + ...)

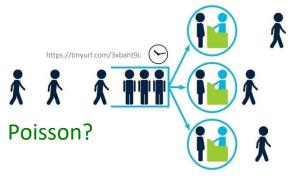


Try it!

https://www.mathsisfun.com/data/quincunx.html


Calculate it!

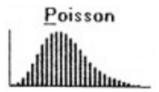
Poisson Distribution


- Distribution of probability of x events occurring in certain interval (broken into units)
 - Interval can be time, area, volume, distance
 - e.g., number of players arriving at server lobby in 5minute period between noon-1pm
- Requires
 - 1. Probability of event same for all time units
 - 2. Number of events in one time unit independent of number of events in any other time unit
 - 3. Events occur singly (not simultaneously). In other words, as interval unit gets smaller, probability of two events occurring approaches 0

Poisson Distributions?

Could Be Poisson

- Number of groups arriving at restaurant during dinner hour
- Number of logins to MMO during prime time
- Number of defects (bugs) per 100 lines of code
- People arriving at cash register (if they shop individually)

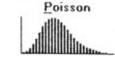


Not Poisson

- Number of people arriving at restaurant during dinner hour
 - People frequently arrive in groups
- Number of students registering for course in Workday per hour on first day of registration
 - Prob not equal most register in first few hours
 - Not independent if too many register early, system crashes

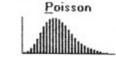
Phrase people use is random arrivals

Poisson Distribution

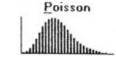


 Distribution of probability of x events occurring in certain interval

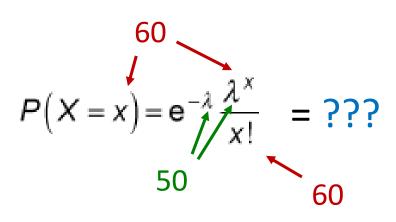
$$P(X=x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

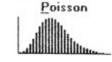

- X = a Poisson random variable
- x = number of events whose probability you are calculating
- λ = the Greek letter "lambda," which represents the average number of events that occur per time interval
- e = a constant that's equal to approximately 2.71828

- Number of games student plays per day averages 1 per day
- 2. Number of games played per day independent of all other days
- 3. Can only play one game at a time

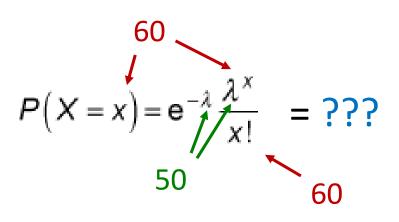

What's probability of playing 2 games tomorrow? In this case, the value of $\lambda = 1$, want P(X=2)

$$P(X=2) = e^{-1}\frac{1^2}{2!} = 0.1839$$

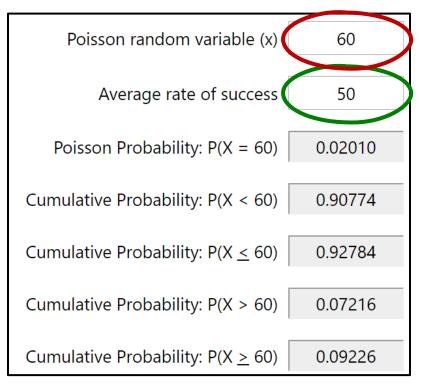


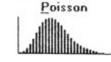

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

$$P(X=x) = e^{-\lambda} \frac{\lambda^{x}}{x!} = ???$$

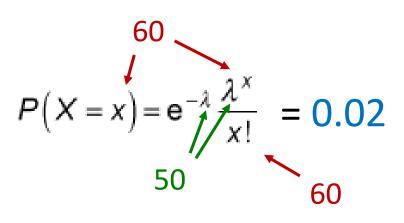


- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

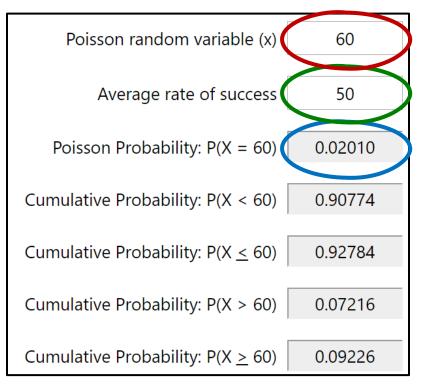


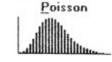


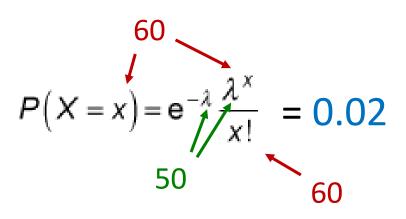
- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

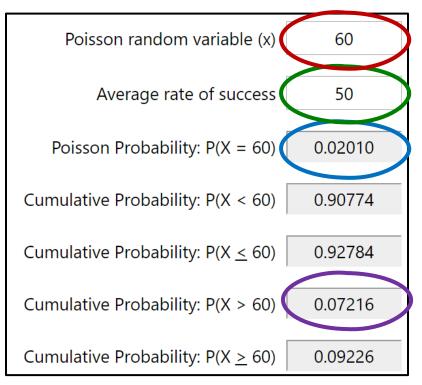


https://stattrek.com/online-calculator/poisson.aspx

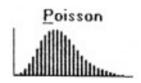



- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?


https://stattrek.com/online-calculator/poisson.aspx


Q: How do we get greater than 60?

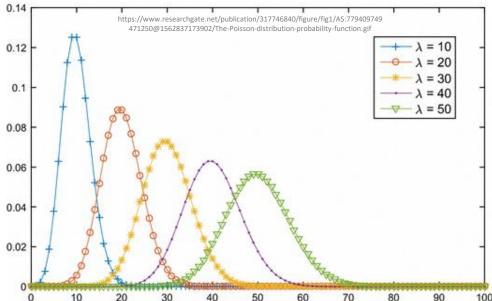
- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?


https://stattrek.com/online-calculator/poisson.aspx

Q: How do we get greater than 60?

P(0) + P(1) + ... + P(60) → P(≤60) P(>60) = 1 - P(≤ 60)

Poisson Distribution



• "So what?" \rightarrow Known formulas

$$P(X=x) = e^{-\lambda} \frac{\lambda^{x}}{x!}$$

- Mean $= \lambda$
- Variance = λ
- Std Dev = sqrt (λ)

Excel: poisson.dist()
poisson.dist(x,mean,cumulative)
mean 50 per day, 60 beds, chance > 60?
= 1 = POISSON.DIST(60, 50, TRUE)
= 0.07216

e.g., Games → may want to know likelihood of 1.5x average people arriving at server

Expected Value – Formulation

- Expected value of discrete random variable is value you'd *expect* after many experimental trials. i.e., mean value of population
 - Value:
 x_1 x_2 x_3 ...
 x_n

 Probability:
 $P(x_1) P(x_2) P(x_3) ...$ $P(x_n)$
- Compute by multiplying each value by probability and summing

 $\mu_{x} = E(X) = x_{1}P(x_{1}) + x_{2}P(x_{2}) + \dots + x_{n}P(x_{n})$ $= \sum x_{i}P(x_{i})$

Expected Value Example – Gambling Game

- Pay \$3 to enter
- Roll 1d6 → 6? Get \$7 1-5? Get \$1
- What is expected payoff?

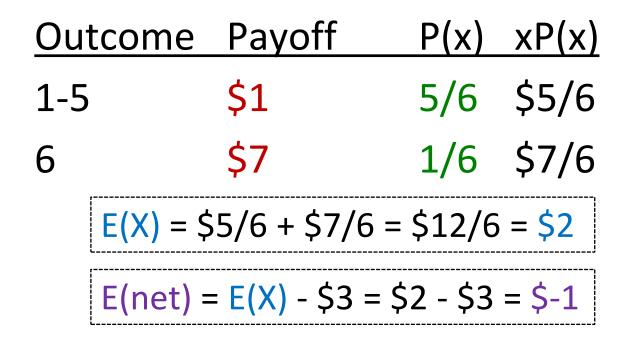
<u>Outcome</u>	Payoff	P(x)	xP(x)
1-5	\$1		
6	\$7		

Expected Value Example – Gambling Game

- Pay \$3 to enter
- Roll 1d6 → 6? Get \$7 1-5? Get \$1
- What is expected payoff?

<u>Outcome</u>	Payoff	P(x)	xP(x)
1-5	\$1	5/6	\$5/6
6	\$7	1/6	\$7/6
E(X) =			

Expected Value Example – Gambling Game


• Pay \$3 to enter

- Roll 1d6 → 6? Get **\$7** 1-5? Get **\$1**
- What is expected payoff? Expected net?

<u>Outcome</u>	Payoff	P(x)	xP(x)
1-5	\$1	5/6	\$5/6
6	\$7	1/6	\$7/6
E(X) = \$	5/6 + \$7/6 =	\$12/6	= \$2
F(net) =	-		

Expected Value Example – Gambling Game

- Pay \$3 to enter
- Roll 1d6 → 6? Get \$7 1-5? Get \$1
- What is expected payoff? Expected net?

Outline

- Intro
- Probability

(done) (done)

- Probability Distributions
 - Discrete (done)

So far random variable could take only discrete set of values

Q: What does that mean?Q: What *other* distributions might we consider?

Outline

(done)

(done)

- Intro
- Probability
- Probability Distributions
 - Discrete (done)
 - Continuous (next)

Continuous Distributions

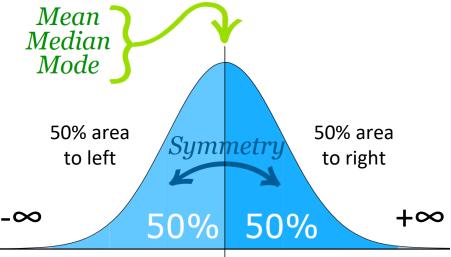
- Many random variables are continuous
 - e.g., recording *time* (time to perform service) or measuring something (*height, weight, strength*)
- For continuous, doesn't make sense to talk about
 P(X=x) → continuum of possible values for X
 - Mathematically, if all non-zero, total probability infinite (this violates our rule)

- So, continuous distributions have probability density, f(x)
- → How to use to calculate probabilities?
- Don't care about specific values

- e.g., P(Height = 60.194672816")

Instead, ask about range of values

- e.g., P(59.5" < X < 60.5")

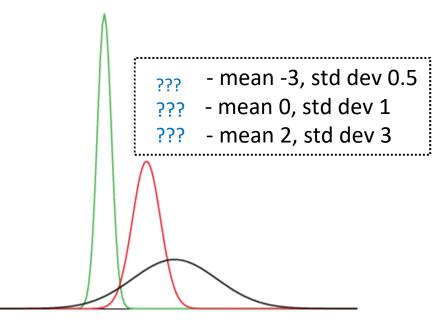

• Uses calculus (integrate area under curve) (not shown here)

Q: What continuous distribution is **especially** important?

ightarrow the Normal Distribution

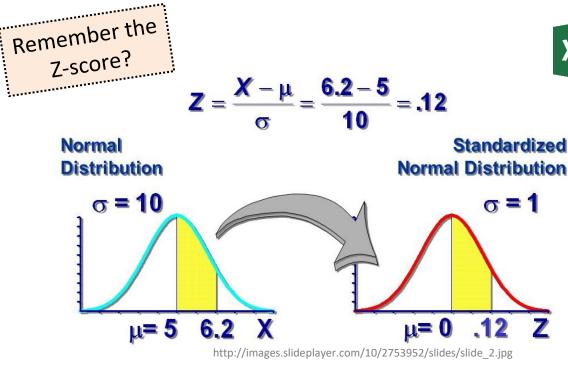
Normal Distribution (1 of 2)

- "Bell-shaped" or "Bell-curve"
 - − Distribution from - ∞ to + ∞
- Symmetric
- Mean, median, mode all same
 - Mean determines location, standard deviation determines "width"
- Super important!
 - Lots of distributions follow a normal curve
 - Basis for inferential statistics (e.g., statistical tests)
 - "Bridge" between probability and statistics


https://www.mathsisfun.com/data/images/normal-distribution-2.svg

Normal Distribution (2 of 2)

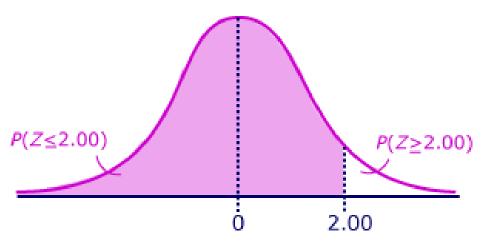
- Many normal distributions (see right)
- However, "the" normal distribution refers to standard normal
 - Mean (μ) = 0
 - Standard deviation (σ) = 1
- Can *convert* any normal to the standard normal
 - Given sample mean (\overline{x})
 - Sample standard dev. (s)


Many normal distributions

Standard Normal Distribution

- Standardize
 - Subtract sample mean (x)
 - Divide by sample standard deviation (s)
- Mean µ = 0
- Standard Deviation $\sigma = 1$
- Total area under curve = 1
 - Sounds like probability!

=norm.dist()


Use to predict how likely an observed sample is given population mean (next)

Using the Standard Normal

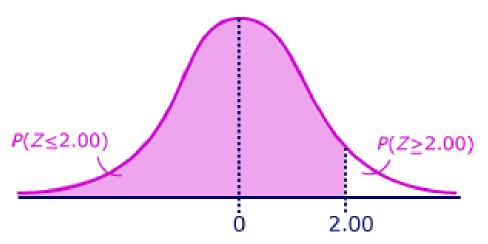
- Suppose League of Legends Champion released once every 24 days on average, standard deviation of 3 days
- What is the probability Champion released 30+ days?
- $x = 30, \overline{x} = 24, s = 3$

$$Z = (x - \overline{x}) / s$$

= (30 - 24) / 3
= 2

• Want to know P(Z > 2)

http://ci.columbia.edu/ci/premba_test/c0331/s6/s6_4.html


Q: how? Hint: what rule might help?

Using the Standard Normal

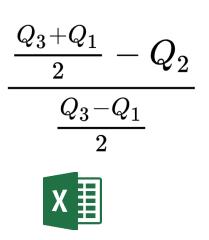
- Suppose League of Legends Champion released once every 24 days on average, standard deviation of 3 days
- What is the probability Champion released 30+ days?
- $x = 30, \overline{x} = 24, s = 3$

 $Z = (x - \overline{x}) / s$ = (30 - 24) / 3 = 2

• Want to know P(Z > 2)

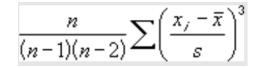
http://ci.columbia.edu/ci/premba_test/c0331/s6/s6_4.html

- =norm.dist(x,mean,stddev,cumulative)
 =1 = norm_dist(30,24,3,true)
- =1 norm.dist(30,24,3,true)

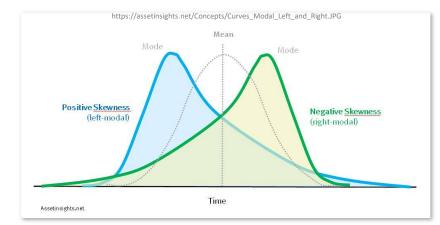

Empirical Rule. Or use table (Z-table) \rightarrow 5% / 2 = 2.5% likely

Test for Normality

- Why?
 - Can use Empirical Rule
 - Use some inferential statistics (parametric tests)
- How?
 - 1. Measure skewness (next)
 - 2. Looks normal
 - Histogram
 - Normal probability plot (QQ plot) graphical technique to see if data set is approximately normally distributed
 - 3. Statistical test
 - Kolmogorov-Smirnov test (K-S) or Shapiro-Wilk (S-W) that compare to normal (won't do, but ideas in next slide deck)

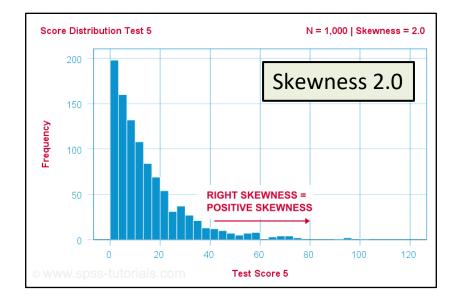

Measuring Skewness

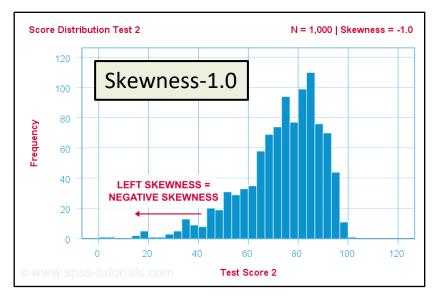
- Measure of symmetry of distribution
 - Normal distribution is perfectly symmetric, skewness 0
- Easy equations:

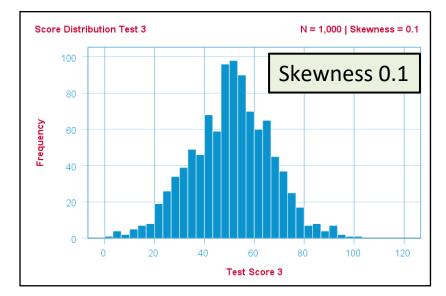


<u>mean – mode</u> standard deviation

=skew(A1:A10)

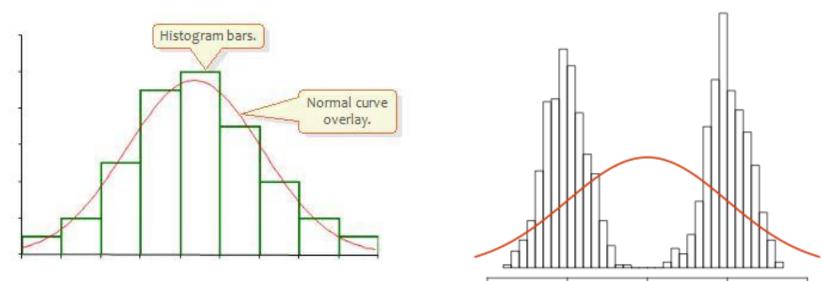

"Fisher–Pearson standardized moment"




- "How much" is not typical?
 - Somewhat arbitrary
 - Less than -1 or greater than +1
 - Highly skewed
 - Between [-1, -0.5] or [0.5, +1]
 - Moderately skewed
 - Between -0.5 and 0.5
 - Symmetric

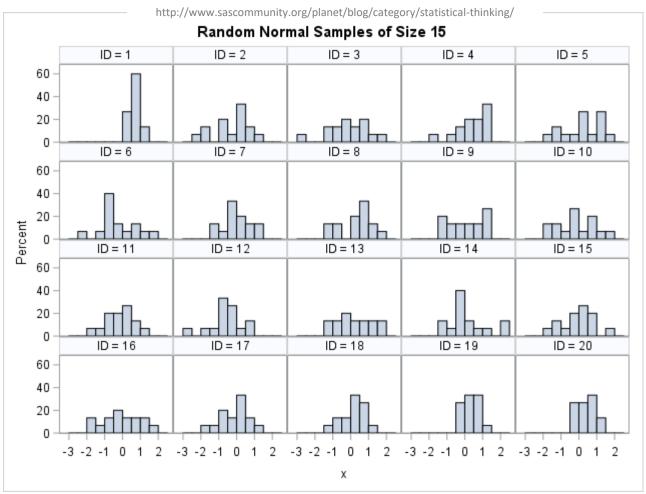
[Note, related "Kurtosis" is how clumped]

Skewness Examples



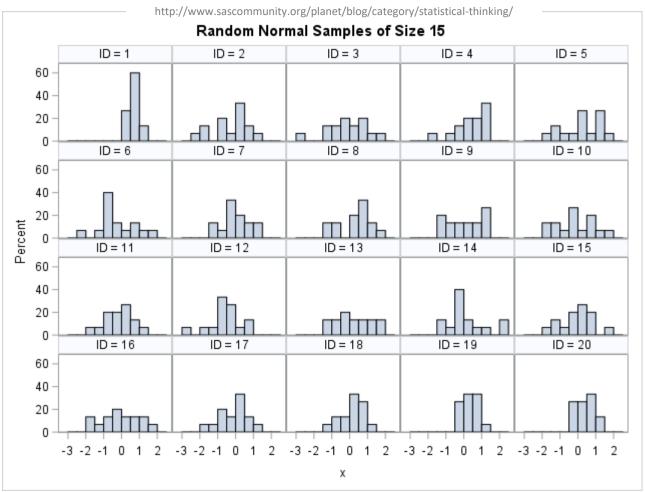
Normality Testing with a Histogram

• Use histogram shape to look for "bell curve"


http://2.bp.blogspot.com/_g8gh7I4zSt4/TR85eGJIMfI /AAAAAAAAQs/PaOHJsjonPM/s1600/histo.JPG

http://seankross.com/img/biqq.png

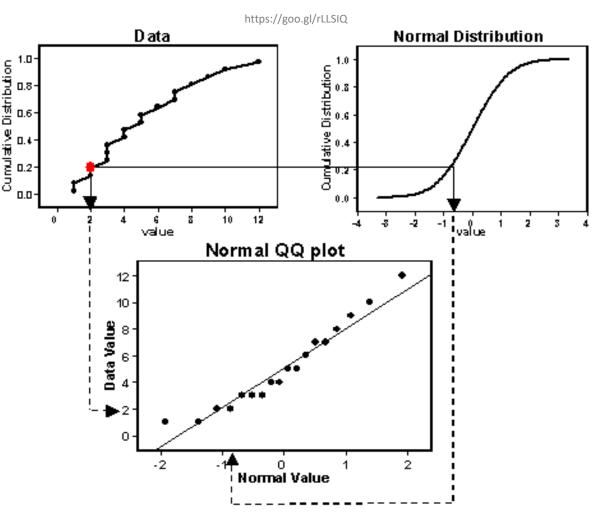
No


Yes

Normality Testing with a Histogram

Q: What distributions are these from? Any normal?

Normality Testing with a Histogram



They are *all* from normal distribution! Suffer from:

- Binning (not continuous)
- Few samples (15) we'll talk about sample size next slide deck

Normality Testing with a Quantile-Quantile Plot

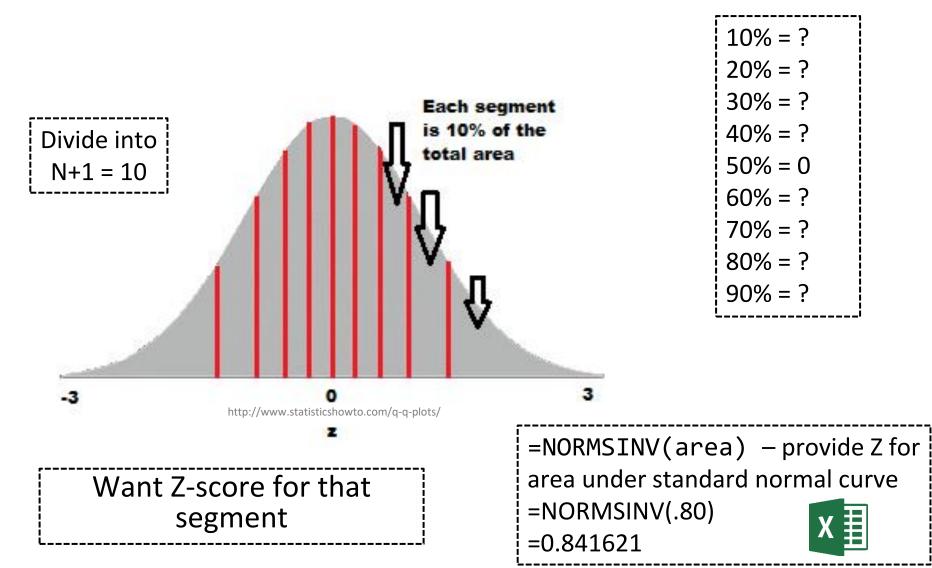
- Percentiles (quantiles) of one versus another
- If line → same distribution
- 1. Order data
- 2. Compute Z scores (normal)
- Plot data (yaxis) versus Z (xaxis)
- Normal? \rightarrow line

Quantile-Quantile Plot Example

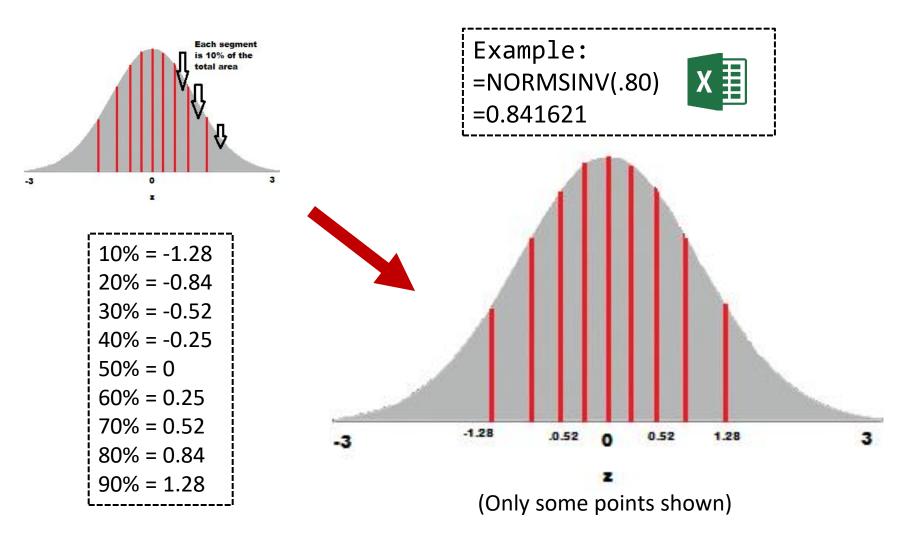
• Do the following values come from a normal distribution?

7.19, 6.31, 5.89, 4.5, 3.77, 4.25, 5.19, 5.79, 6.79

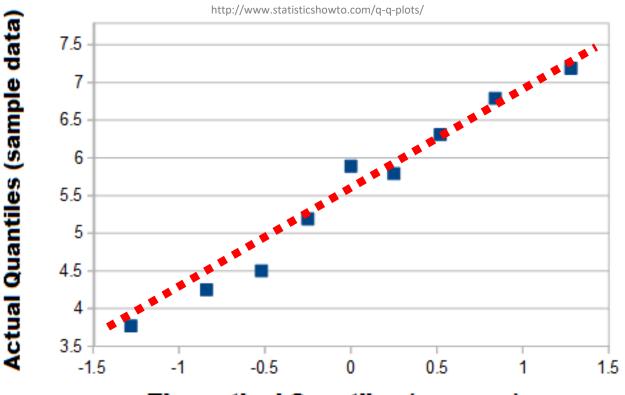
- 1. Order data
- 2. Compute Z scores
- 3. Plot data versus Z


Show each step, next

Quantile-Quantile Plot Example – Order Data


Unordered	Ordered (low to high)
7.19	3.77
6.31	4.25
5.89	4.50
4.50	5.19
3.77	5.89
4.25	5.79
5.19	6.31
5.79	6.79
6.79	7.19
	= 9 data points

http://www.statisticshowto.com/q-q-plots/


Quantile-Quantile Plot Example – Compute Z scores

Quantile-Quantile Plot Example – Compute Z scores

Quantile-Quantile Plot Example – Plot

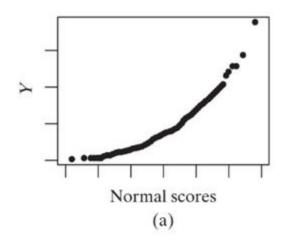
Theoretical Quantiles (z-scores)

Linear? \rightarrow Normal

Quantile-Quantile Plots in Excel

x≣

Mostly, a manual process. Do as per above.


Example of step by step process (with spreadsheet):

http://facweb.cs.depaul.edu/cmiller/it223/normQuant.html

4	A	В	С	D	E	F	G	н	1	J	K	L	M	N
1	QQ Plot													
2	1910.00.0						3	_						-
3	Data		QQ Tables				QQ Plot							
4	-5.2									uu	FIOL			
5	-3.9		Count	8	16					2	1			_
6	-2.1		Mean	0.375						1.5	<u>.</u>			+
7	0.2		Std Dev	3.894593			-			1	-		1	-
8	1.1						-					1	- •	
9	2.7		Interval	Data	Std Norm	Std Data	Std Normal			0.5	1 - 1	~		
10	4.9		1	-5.2	-1.53412	+1.43147	2			0		3		
11	5.3		3	-3.9	-0.88715	-1.09768	Std	-4	1	-0.5	0	2	4	6
12			5	-2.1	-0.48878	-0.6355	-		/	-1				
13			7	0.2	-0.15731	-0.04493		-		-1.5				
14			9	1.1	0.157311	0.186156		1						
15			11	2.7	0.488776	0.596981	-			-2	Data			
16 17			13	4.9	0.887147	1.161867								
17			15	5.3	1.534121	1.264574								

https://i2.wp.com/www.real-statistics.com/wp-content/uploads/2012/12/qq-plot-normality.jpg

Examples of Normality Testing with a Quantile-Quantile Plot

http://d2vlcm61l7u1fs.cloudfront.net/media%2Fb95%2Fb953e7cd-31c3-45b0-a8ec-03b0e81c95d1%2Fphp2Y86od.png