Introduction
Groupwork

- What is data analysis for game development?
- Where does this data come from?
- What can game analysis do for game development?

- Icebreaker, Groupwork, Questions

https://web.cs.wpi.edu/~imgd2905/d23/groupwork/1-introduction/handout.html
What is data analysis for game development?
What is data analysis for game development?

• Using **game data** to inform the game development process

• Where does this data come from?

→ *Players*, actually playing game
 – **Quantitative** (instrumented)
 – **Qualitative** (subjective evaluation)
 – (But often lots more of the former!)
What can game analysis do for game development?
What can game analysis do for game development?

- **Improve level design** – e.g., see where players are getting stuck
- **Focus development on critical content** – e.g., see what game modes or characters are not used
- **Balance gameplay** – e.g., tune parameters for more competitive and fun combat
- **Broaden appeal** – e.g., hear if content/story is engaging or repulsing
- **Note**: game data often informs *players*, too
 - Analytics not dissimilar
Why is data analysis for game development needed?
Why is data analysis for game development needed?

• **Challenge**
 – Games gotten larger and more complex
 • Number of reachable states, characters
 → Game balance harder to achieve
 – Need for metrics to make sense of player behavior has increased

• **Opportunity**
 – New technologies enable collecting data, aggregation, access and analysis
IMGD 2905 – Doing Data Analysis for Game Development

- **Data analysis pipeline** – get data from games, through analysis, to stakeholders
- **Summary statistics** – central tendencies of data
- **Visualization of data** – how to display analysis, illustrate messages
- **Statistical tests** – quantitatively determine relationships (e.g., correlation)
 - Probability needed as foundation (also used for game rules)
- **Regression** – model relationships
- **Hint at more advanced topics**
 - e.g., ML, Data management ...

For this class:
- Described in lecture
- Read about in book
- Applied in projects and homework
Foundations for Data Analysis @ WPI

• Statistics classes
 – MA 2610 Applied Statistics for Life Sciences
 – MA 2611 Applied Statistics I
 – MA 2612 Applied Statistics II

• Probability classes
 – MA 2621 Probability for Applications

• Data Science (minor and major)
 – DS 1010 Introduction to Data Science
 – DS 2010 Modeling and Data Analysis
 – DS 3010 Computational Data Intelligence
 – DS 4433/CS4433 Big Data Management and Analytics

• Data Mining
 – CS 4445 Data Mining and Knowledge Discovery in Databases

• Other
 – CS 1004 Introduction to Programming for Non-Majors
 – CS 3431 Database Systems I

Note – other Stats and Probability classes are primarily geared for Math majors
Outline

• Overview (done)
• Game Analytics Pipeline (next)
• Game Data Analysis Examples
Sources of Game Data

Quantitative (Objective)

- Internal Testing
 - Developers
 - QA
- External Testing
 - Usability testing
 - Beta tests
 - Long-term play data

Qualitative (Subjective)

- Surveys
- Reviews
- Online communities
- Postmortems

How to get from data to dissemination?
→ Game analytics pipeline
Game Analytics Pipeline

Game → Raw Data → Extracted Data → Analysis

Analysis:
- Exploratory Graphs/Stats
- Statistical Tests
- Charts and Tables

Dissemination:
- Presentation
- Report
Game Analytics Pipeline – Example

- **Hearthstone**
- **Track-o-Bot**
- **Collect-o-Bot**
- **Python**
- **JSON**
- **Dissemination**
 - **PowerPoint**
 - **Word**
- **Analysis**
 - **Excel**

Project 3!
Game Analytics Components

- **Games** – breadth of experience with games, specific experience with game to be analyzed
- **Tools** – import, clean, filter, format data so can analyze
- **Statistics** – measures of central tendency, measures of spread, statistical tests
- **Probability** – rules, distributions
- **Data Visualization** – bar chart, scatter plot, histogram, error bars
- **Technical Writing and Presentation** – white paper, technical talk; audience is peer group, developers, boss
Outline

• Overview (done)
• Game Analytics Pipeline (done)
• Game Data Analysis Examples (next)
 – Table
 – Scatter plot
 – Boxplot
Example:
Project Gotham Racing 4

http://dl.acm.org/citation.cfm?id=1985952

- Publisher – Microsoft 2007
 - 134 vehicles, 9 locations, 10 game modes

- Analyzed data
 - (Authors worked at Microsoft)
 - 3.1 million log entries, 1000s of users
Results

<table>
<thead>
<tr>
<th>Game Mode</th>
<th>Races</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFLINE_CAREER</td>
<td>1479586</td>
<td>47.63%</td>
</tr>
<tr>
<td>PGR_ARCADE</td>
<td>566705</td>
<td>18.24%</td>
</tr>
<tr>
<td>NETWORK_PLAY</td>
<td>584201</td>
<td>18.81%</td>
</tr>
<tr>
<td>SINGLE_PLAYER_PLAY</td>
<td>185415</td>
<td>5.97%</td>
</tr>
<tr>
<td>NET_TOURNY_ELIM</td>
<td>2713</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Races</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREET_RACE</td>
<td>795334</td>
<td>25.60%</td>
</tr>
<tr>
<td>NET_STREET_RACE</td>
<td>543491</td>
<td>17.50%</td>
</tr>
<tr>
<td>ELIMINATION</td>
<td>216042</td>
<td>6.95%</td>
</tr>
<tr>
<td>HOTLAP</td>
<td>195949</td>
<td>6.31%</td>
</tr>
<tr>
<td>TESTTRACK_TIME</td>
<td>7484</td>
<td>0.24%</td>
</tr>
<tr>
<td>CAT_N_MOUSE_FREE</td>
<td>3989</td>
<td>0.13%</td>
</tr>
<tr>
<td>CAT_N_MOUSE</td>
<td>53</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

- Thoughts?
- What are some main messages?
Project Gotham Racing 4: Results

<table>
<thead>
<tr>
<th>Game Mode</th>
<th>Races</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFLINE_CAREER</td>
<td>1479586</td>
<td>47.63%</td>
</tr>
<tr>
<td>PGR_ARCADE</td>
<td>566705</td>
<td>18.24%</td>
</tr>
<tr>
<td>NETWORK_PLAY</td>
<td>584201</td>
<td>18.81%</td>
</tr>
<tr>
<td>SINGLE_PLAYER_PLAY</td>
<td>185415</td>
<td>5.97%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Races</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREET_RACE</td>
<td>795334</td>
<td>25.60%</td>
</tr>
<tr>
<td>NET_STREET_RACE</td>
<td>543491</td>
<td>17.50%</td>
</tr>
<tr>
<td>ELIMINATION</td>
<td>216042</td>
<td>6.95%</td>
</tr>
<tr>
<td>HOTLAP</td>
<td>195949</td>
<td>6.31%</td>
</tr>
</tbody>
</table>

- **Mode**
 - *Offline career* dominates
 - *Network* play not well-used
- **Events**
 - *Street race* and *network street race* dominate
 - *Cat and mouse* almost never used
- **Vehicles** (not shown)
 - 1/3 used in less than 0.1% of races
Project Gotham Racing 4: Conclusion

• Content underused - 30-40% of content in less than 1% of races

• Use to shift emphasis to DLC, next version
 – Asset creation costs significant, so even 25% reduction noticeable

• Other (not shown)
 – Encouraging new players to play career mode
 • Increasing likelihood of continuing play
 – Encouraging new players to stay with F Class longer
 • Rather than move to more difficult to control A Class
Example:

Halo 3

B. Phillips. “Peering into the Black Box of Player Behavior: The Player Experience Panel at Microsoft Game Studios”, Game Developers Conference (GDC), 2010. [Link](http://www.gdcvault.com/play/1012387/Peering-into-the-Black-Box)

- Publisher – Microsoft 2007
 - Achievements: single player missions, challenges such as finding skulls, multiplayer accomplishments...

- Analyzed data
 - (Author worked at Microsoft)
 - 18,000 players
Halo 3: Results

- Thoughts?
- What are some main messages?
Halo 3: Results

- 73% of players completed campaign
 - Can compare to other Xbox games
- Took 26 days to accomplish
- Double that time for all original content
- DLC provides users up to 2 years of content
Example: League of Legends

- Publisher – Riot Games 2009

 Rank: ~5 Tiers, 5 divisions each → 25

- User study (52 players)

 Play LoL in controlled environment

 Record objective data

 (e.g., **player rank** and game stats)

 Provide survey for subjective data

 (e.g., **match balance** and **enjoyment**)

 ![Game Balance Diagram](image)
League of Legends: Results

Team Imbalance
(difference in average player rank)
Min: 0
Median: 0.75
Max: 15

Game Imbalance
(difference in average team rank)
Min: 0
Median: 0.5
Max: 2.5
League of Legends: Results

Team Imbalance
(difference in average player rank)
Min: 0
Median: 0.75
Max: 15

Most teams are balanced
Over half less than 1

Game Imbalance
(difference in average team rank)
Min: 0
Median: 0.5
Max: 2.5

Most games evenly matched
Over half less than 0.5
League of Legends: Results

Team Imbalance
(difference in average player rank)
- Min: 0
- Median: 0.75
- Max: 15

Most teams are balanced
Over half less than 1

Game Imbalance
(difference in average team rank)
- Min: 0
- Median: 0.5
- Max: 2.5

Most games evenly matched
Over half less than 0.5
League of Legends: Results

Objective

- Most teams are balanced
 - But about 10% more than 3 from mean

- Most games evenly matched
 - But about 5% difference of 2 from mean

Subjective

- Win? Game is balanced
 - Lose? Game is imbalanced

- Win? Game is fun (70%), never not fun
 - Lose? Game is almost never fun (90%)
League of Legends: Results

Imbalance in player’s favor the most fun!

Matchmaking systems may want to consider - e.g., balance not so important, so long as player not always on imbalanced side
Summary

• Data analysis for games increasingly important
 – Has potential to improve game development

• Knowledge and skills required
 – Scripting
 – Statistics
 – Data analysis
 – Writing and presentation

“Let’s get to it, already!”
-- Tracer (Overwatch)