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Overview

• Use statistics to infer population parameters

http://3.bp.blogspot.com/_94E2PdKwaXE/S-xQRuoiKAI/AAAAAAAAABY/xvDRcG_Mcj0/s1600/120909_0159_1.png

Inferential statistics



Outline

• Overview     (done)

• Foundation     (next)

• Inferring Population Parameters 

• Hypothesis Testing



Groupwork

Remember, probability distribution shows possible 
outcomes on x-axis and probability of each on y-axis.

1. Describe the probability distribution of 1 d6?

2. Describe the probability distribution of 2 d6?

3. Describe the probability distribution of 3 d6?

Icebreaker, Groupwork, Questions
https://web.cs.wpi.edu/~imgd2905/d24/groupwork/6-prob-dist/handout.html

https://academo.org/demos/dice-roll-
statistics/

https://web.cs.wpi.edu/~imgd2905/d24/groupwork/6-prob-dist/handout.html
https://academo.org/demos/dice-roll-statistics/
https://academo.org/demos/dice-roll-statistics/


Dice Rolling (1 of 4)

• Have 1d6, sample (i.e., roll 1 die)

• What is probability distribution of values?



Dice Rolling (1 of 4)

• Have 1d6, sample (i.e., roll 1 die)

• What is probability distribution of values?

http://www.investopedia.com/articles/06/probabilitydistribution.asp

“Square“ 
distribution



Dice Rolling (2 of 4)

• Have 1d6, sample twice and sum (i.e., roll 2 
dice)

• What is probability distribution of values?



Dice Rolling (2 of 4)

• Have 1d6, sample twice and sum (i.e., roll 2 
dice)

• What is probability distribution of values?

http://www.investopedia.com/articles/06/probabilitydistribution.asp

“Triangle“ 
distribution



Dice Rolling (3 of 4)

• Have 1d6, sample thrice and sum (i.e., roll 3 
dice)

• What is probability distribution of values?



Dice Rolling (3 of 4)

• Have 1d6, sample thrice and sum (i.e., roll 3 
dice)

• What is probability distribution of values?

http://www.investopedia.com/articles/06/probabilitydistribution.asp

What’s happening 
to the shape?



Dice Rolling (3 of 4)

• Have 1d6, sample thrice and sum (i.e., roll 3 
dice)

• What is probability distribution of values?

What’s happening to 
the shape?



Dice Rolling (4 of 4)
• Same holds for general experiments with dice (i.e., 

observing sample sum and mean of dice rolls)

http://www.muelaner.com/uncertainty-of-measurement/

Ok, neat – for “square” distributions (e.g., d6).
But what about experiments with other distributions?

Resulting sum/mean 
follows a normal 
distribution
→ Even though base 
distribution is 
uniform!



Sampling 
Distributions

http://flylib.com/books/2/528/1/html/2/images/figu115_1.jpg



Sampling 
Distributions

• With “large enough” 
sample size, 
sum/mean looks “bell-
shaped” → Normal!

• How many is large 
enough?
– 30 (15 if symmetric 

distribution)

• Central Limit Theorem
– Sum of independent 

variables tends 
towards Normal 
distribution

http://flylib.com/books/2/528/1/html/2/images/figu115_1.jpg
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Sampling 
Distributions

• With “large enough” 
sample size, 
sum/mean looks “bell-
shaped” → Normal!

• How many is large 
enough?
– 30 (15 if symmetric 

distribution)

• Central Limit Theorem
– Sum/mean of 

independent variables 
tends towards Normal 
distribution

http://flylib.com/books/2/528/1/html/2/images/figu115_1.jpg



A
B

A
B

Why do we care about sample means 
following Normal distribution?

• What if we had only a 
sample mean and no 
measure of spread

– e.g., mean score is 3

• What can we say about 
population mean?

– Not a whole lot!

– Yes, population mean 
could be 6.  But could be 
0.  How likely are each?

→ No idea!

Sample mean
Population mean?



Why do we care about sample means 
following Normal distribution?

• Remember this?

Allows us to predict range to 
bound population mean

(see next slide)

http://www.six-sigma-material.com/images/PopSamples.GIF

With mean and 
standard deviation



Why do we care about sample means 
following Normal distribution?

Probable range of 
population mean

Sample 
mean

Actual population mean 
(probably) in this range!



Outline

• Overview     (done)

• Foundation     (done)

• Inferring Population Parameters (next)

• Hypothesis Testing



Estimating Population Mean

• Underlying data follows  
uniform probability 
distribution (d6)

– But assume population 
mean unknown

Sample     Sample Mean

1 d6     4.0

2 d6 (4 + 2) / 2 =  3.0

3 d6 (1 + 6 + 2) / 3 = 2.3

4 d6 (4 + 4 + 2 + 3) / 4 = 3.3

Q: How do we estimate 
the population mean?

(Example)



Estimating Population Mean

Q: What happens as 
sample size 
increases?
Q: How big a sample 
do we need?

Depends upon how 
much varies

Values that are not 
the mean contribute 
to “error” → 
sampling error

https://demonstrations.wolfram.com/L
awOfLargeNumbersDiceRollingExample/

Sample size 50

Sample size 500

Sample size 5000

https://demonstrations.wolfram.com/LawOfLargeNumbersDiceRollingExample/
https://demonstrations.wolfram.com/LawOfLargeNumbersDiceRollingExample/


Sampling Error
• Error from estimating population 

parameters from sample statistics is 
sampling error

• Exact error often cannot be known (do not 
know population parameters)

• But size of error based on:
– Variation in population (σ) itself – more 

variation, more sample statistic variation (s)

– Sample size (N) – larger sample, lower error
• Q: Why can’t we just make sample size super large?

• How much does it vary? → Standard error

low variance

high variance



Standard Error

• Amount sample means will 
vary from experiment to 
experiment of same size
– Standard deviation of the 

sample means

• Also, likelihood that sample 
statistic is near population 
parameter

So what? Reason about population mean
e.g., 95% confident that sample mean is 
within ~ 2 SE’s
(where does this come from?)

s 

• What does the size of the 
standard error depend 
upon?  (Hint: see formula 
above)



Standard Error

• Amount sample means will 
vary from experiment to 
experiment of same size
– Standard deviation of the 

sample means

• Also, likelihood that sample 
statistic is near population 
parameter

So what? Reason about population mean
e.g., 95% confident that sample mean is 
within ~ 2 SE’s
(where does this come from?)

s 

(Example next)

• Depends upon sample 
size (N)

• Depends upon standard 
deviation (s)



Standard Error (2 of 2)

http://www.biostathandbook.com/standarderror.html

standard error, 100 experiments, N=3

Groupwork!

If N = 20:
What will happen to x’s?

What will happen to dots?

If N=20: 
What will happen to means?

What will happen to bars?
How many will cross the blue line?



Groupwork

1. How many of the bars intersect the blue?

2. What do graphs look like N = 20?

3. Now, how many bars intersect?

• Standard Error
https://web.cs.wpi.edu/~imgd2905/d24/groupwork/7-std-

error/handout.html

standard error, 100 experiments, N=3

https://web.cs.wpi.edu/~imgd2905/d24/groupwork/7-std-error/handout.html
https://web.cs.wpi.edu/~imgd2905/d24/groupwork/7-std-error/handout.html


Standard Error (2 of 2)

http://www.biostathandbook.com/standarderror.html

standard error, 100 experiments, N=3

If N = 20:
What will happen to x’s?

What will happen to dots?

If N=20: 
What will happen to means?

What will happen to bars?
How many will cross the blue line?



Standard Error (2 of 2)

http://www.biostathandbook.com/standarderror.html

standard error, 100 experiments, N=3

standard error, 100 experiments, N=20

Estimate population parameter → confidence interval

How many cross the blue line?



Confidence Interval
• Range of values with specific certainty that population 

parameter is within
– e.g., 90% confidence interval for mean League of Legends 

match duration: [28.5 minutes, 32.5 minutes]

28.5 32.5

• Have sample of durations
• Compute interval containing 

mean population duration ()
(with 90% confidence)

• In general:
probability of  in interval [c1,c2] 

with A confidence

Mean: 
30.5



Confidence Interval for Mean
• Probability of  in interval 

[c1,c2]
– P(c1 <  < c2) = 1-
[c1, c2] is confidence interval
 is significance level
100(1-) is confidence level

• Typically want  small so 
confidence level 90%, 
95% or 99% (more on 
effect later)

• Say,  = 0.1. Could do k 
experiments (size n), find 
sample means, sort
– Graph distribution

• Interval from distribution: 
– Lower bound:   5%
– Upper bound: 95% 
→ 90% confidence interval

So, do we have to do k 
experiments, each of size n?!

http://www.comfsm.fm/~dleeling/statistics/notes009_normalcurve90.png



Confidence Interval Estimate

• Estimate interval from 1 
experiment, size n

• Compute sample mean ( ҧ𝑥), 
sample standard error (SE)

• Multiply SE by t distribution

• Add/subtract from sample 
mean

→ Confidence interval
e.g., mean 30.5
t x SE = 2
30.5 -  2 = 28.5
30.5 + 2 =  32.5
[28.5, 32.5]

• Ok, what is t distribution?

– Function, parameterized 
by  and n



t distribution

• Looks like standard normal, but bit “squashed”

• Gets more less squashed as n gets larger

http://ci.columbia.edu/ci/premba_test/c0331/images/s7/6317178747.gif

aka student’s t distribution (“student” 
was anonymous name used when 

published by William Gosset)

• Note, can use 
standard normal (z 
distribution) when 
large enough sample 
size (n = 30+)



Computing a Confidence Interval – 
Example 

• Suppose gathered game times in 
a user study (e.g., for your MQP)

• Can compute sample mean, yes

• But really want to know where 
population mean is

→ Bound with confidence interval

3.9
3.2
4.1
3.3
2.8
4.2
3.1
4.5
4.5
4.8
4.9
5.1
3.7
3.4
5.6
3.1

4.4
3.8
2.8
4.2
2.8
2.9
1.9
5.9
3.9
3.2
4.1
5.3
3.6
5.1
2.7
3.9

(Unsorted)
Game Time



Computing a Confidence Interval – 
Example 

• ҧ𝑥 = 3.90, stddev s=0.95, n=32
• A 90% confidence interval ( is 0.1) for 

population mean ():

3.90 ±
1.696×0.95

32
 

       = [3.62, 4.19]

• With 90% confidence,  in that 
interval.  Chance of error 10%.

• But, what does that mean?

3.9
3.9
4.1
4.1
4.2
4.2
4.4
4.5
4.5
4.8
4.9
5.1
5.1
5.3
5.6
5.9

1.9
2.7
2.8
2.8
2.8
2.9
3.1
3.1
3.2
3.2
3.3
3.4
3.6
3.7
3.8
3.9

(Sorted)
Game Time

(See next slide for depiction of meaning)

Need t
=TINV(0.1,31)
→ 1.696



Meaning of Confidence Interval ()

Experiment/Sample   Includes ?

1      yes

2      yes

3      no

…        e.g.,

100     yes               =0.1

Total     yes > 100 (1-) 90

Total     no  < 100  10

f(x)

 If 100 experiments and 
confidence level is 90%:

90 cases interval includes , 
in 10 cases not include 



How does Confidence Interval Size 
Change?

• With sample size (N)

• With confidence level (1-)

Look at each separately next



How does Confidence Interval Change 
(1 of 2)?

• What happens to 
confidence interval 
when sample size (N) 
increases?

– Hint: think about 
Standard Error



How does Confidence Interval Change 
(1 of 2)?

• What happens to 
confidence interval 
when sample size (N) 
increases?

– Hint: think about 
Standard Error



How does Confidence Interval Change 
(2 of 2)?

• What happens to 
confidence interval 
when confidence level 
(1-) increases?

• 90% CI = [6.5, 9.4]
– 90% chance population 

value is between 6.5, 9.4

• 95% CI = [6.1, 9.8]
– 95% chance population 

value is between 6.1, 9.8

• Why is interval wider 
when we are “more” 
confident?

http://vassarstats.net/textbook/f1002.gif



http://vassarstats.net/textbook/f1002.gif

How does Confidence Interval Change 
(2 of 2)?

• What happens to 
confidence interval 
when confidence level 
(1-) increases?

• 90% CI = [6.5, 9.4]
– 90% chance population 

value is between 6.5, 9.4

• 95% CI = [6.1, 9.8]
– 95% chance population 

value is between 6.1, 9.8

• Why is interval wider 
when we are “more” 
confident? See 
distribution on the right



Groupwork – 
Interpreting a Confidence Interval

Stay tuned!  Example coming



Using Confidence Interval (1 of 3)

• For charts, depict with error bars
• CI different than standard deviation

– Standard deviation show spread
– CI bounds population parameter (decreases with N)

 → CI indicates range of population parameter

Make sure sample size N=30+  
(N=15+ if somewhat normal.

Any N if know distro is normal)



Using Confidence Interval (2 of 3)

Compare two alternatives, quick check for statistical significance

https://measuringu.com/ci-10things/

No overlap Large overlap Some overlap

• No overlap? → 90% confident difference (at  = 0.10 level)
• Large overlap (50%+)? → No statistically significant diff (at  = 0.10 level)
• Some overlap? → more tests required



Interpreting Confidence Intervals
• Assume bars are conference 

intervals
• Interpret difference in old 

versus new

• Large overlap
• No statistically significant 

difference (at given )

Helpful hint: ignore sample means.  Think 
about population means for Old and New

https://emedia1.nhs.wales/PublicHealthWales/cache/file/DF7D68CA-6C7F-42BA-87FFCBD9FF0668BB.png



(Some overlap)

(Here is the overlap)

But if compute difference, and then 
confidence interval does not cross 0!
(Caused by  error propagation)

Using Confidence Interval (3 of 3)
[Some Overlap]



How Not to Use Confidence Intervals
(1 of 2)

• Overlap – careful not to say no statistically 
significant difference (see previous slide)

“The confidence intervals of the two groups overlap, hence 
the difference is not statistically significant” — A lot of People

Overlap!

But not 
significant



How Not to Use Confidence Intervals 
(2 of 2)

• Do not quantify variability (e.g., 95% of values 
in interval) 

https://www.graphpad.com/guides/prism/7/statistics/images/hmfile_hash_f71959f8.gif

“The 95% confidence interval goes from C1 to C2, so 95% of 
all observations are between C1 and C2. — A lot of People



Statistical Significance versus Practical 
Significance

It’s a Honey of an O

• Boxes of Cheerios, Tastee-O’s 
both target 12 oz.  

• Measure weight of 18,000 
boxes (large N!)

• Using statistics:
– Cheerio’s heavier by 0.002 oz.

– And statistically significant 
(=0.99)!

• But … 0.0002 is only ½ O.  
Customer doesn’t care!

Latency can Kill?

• Lag in League of Legends

• Pay $$ to upgrade Internet 
from 100 Mb/s to 1000 Mb/s

• Measure ping to LoL server for 
20,000 samples (large N!)

• Using statistics
– Ping times improve 0.4 ms

– And statistically significant 
(=0.99)!

• But … below perception!

Warning: may find statistically significant difference. 
That doesn’t mean it is important.



(C
o

h
e

n
’s d

)
Effect Size

• Quantitative measure of strength of finding
– Measures practical significance

• Emphasizes size of difference of relationship

https://www.simplypsychology.org/cohen-d.jpg

Similar to Z-score And Coefficient 
of Variation



What Confidence Level to Use (1 of 2)?
• Often see 90% or 95% (or even 99%) used

• Choice based on loss if wrong (population parameter is 
outside), gain if right (parameter inside)

– If loss is high compared to gain, use higher confidence

– If loss is low compared to gain, use lower confidence

– If loss is negligible, lower is fine

• Example (loss high compared to gain):

– Hairspray, makes hair straight, but has chemicals

– Want to be 99.9% confident it doesn’t cause cancer

• Example (loss low compared to gain):

– Hairspray, makes hair straight, mainly water 

– Ok to be 75% confident it straightens hair



What Confidence Level to Use (2 of 2)?
• Often see 90% or 95% (or even 99%) used

• Choice based on loss if wrong (population parameter is 
outside), gain if right (parameter inside)

– If loss is high compared to gain, use higher confidence

– If loss is low compared to gain, use lower confidence

– If loss is negligible, lower is fine

• Example (loss negligible compared to gain):

– Lottery ticket costs $1, pays $5 million

– Chance of winning is 10-7 (50% payout, so 1 in 10 million)

– To win with 90% confidence, need 9 million tickets

• No one would buy that many tickets ($9 mil to win $5 mil)!

– So, most people happy with 0.0001% confidence



Outline

• Overview     (done)

• Foundation     (done)

• Inferring Population Parameters (done)

• Hypothesis Testing    (next)



Hypothesis Testing

• Term arises from science

– State tentative explanation 
→ hypothesis

– Devise experiments to 
gather data

– Data supports or rejects 
hypothesis

• Statisticians have 
adopted to test using 
inferential statistics

→ Hypothesis testing

Just brief overview here → Conversant
 Chapters 8 & 9 in book have more

http://s1.hubimg.com/u/4205792_f520.jpg

Science



Hypothesis Testing Terminology

• Null Hypothesis (H0) – hypothesis that no 
significance difference between 
measured value and population 
parameter (any observed difference due 
to error)
– e.g., population mean time for Riot to bring 

up NA servers is 4 hours

• Alternative Hypothesis –  hypothesis 
contrary to null hypothesis
– e.g., population mean time for Riot to bring 

up NA servers is not 4 hours

• Care about Alternate, but test Null
– If data supports, Alternate may not be true
– If data rejects, Alternate may be true

• Why Null and Alternate?
– Remember, data doesn’t “prove” 

hypothesis
– Can only reject it at certain significance 

(e.g., there is probably a difference)
– So, reject Null

• P value – smallest level that can 
reject H0

“If p value is low, then H0 must go”

• How “low” based on “risk” of being 
wrong (like confidence interval)

http://www.buzzle.com/img/articleImages/605910-49223-57.jpg



Example – Smelling Salts and Athletes

Smelling salts helps e-sports? 

1. Alternative hypothesis - Smelling salts improves 
performance

2. Null hypothesis - Salts no effect on performance
3. Significance level - significance 0.10 (90%)
4. Experiment - One group with salts and another with 

placebo, compute difference in game score
5. P-value - p-value is 0.004
6. Conclusion - difference is statistically significant 

(below 0.1). Reject Null, so support for alternative 
hypothesis that smelling salts help performance



Example – Vitamin C and Colds

Vitamin C prevents common cold?

1. Alternative hypothesis - Take vitamin C less likely to 
become ill

2. Null hypothesis - Take vitamin C no less likely to become ill 
3. Significance level - significance 0.05 (95%)
4. Experiment - one group vitamin C, other placebo, and 

record whether or not participants got cold
5. P-value - p-value is 0.20
6. Conclusion - difference is not significant (0.20 ≰ 0.5). Fail 

to reject Null hypothesis. No support for alternative 
hypothesis that vitamin C can prevent colds



Hypothesis Testing Steps

1. State hypothesis (H) and null hypothesis (H0)

2. Evaluate risks of being wrong (based on loss and 
gain), choosing significance () and sample size (N)

3. Collect data (sample), compute statistics

4. Calculate p value based on test statistic and 
compare to 

5. Make inference
– Reject H0 if p value less than  

• So, H may be right

– Do not reject H0 if p value greater than 
• So, H may not be right



Hypothesis Testing Steps (Example)
• State hypothesis (H) and null hypothesis (H0)

– H: Mario level takes more than 5 minutes to complete
– H0: Mario level takes 5 minutes to complete (H0 always has =)

• Evaluate risks of being wrong (based on loss and gain), 
choosing significance () and sample size (N)
– Player may get frustrated, quit game, so  = 0.1
– Without distribution analysis, 30 (Central Limit Theorem)

• Collect data (sample), compute statistics
– 30 people play level, compute average minutes, compare to 5
– E.g., mean of 6.1 minutes

• Calculate p value based on test statistic and compare to 
– P value = 0.02,  = 0.1 
– “How likely is it that the true mean is 5 when measure 6.1?”

• Make inference
– Here: p value less than  → REJECT H0, so H may be right
– Note, would not have rejected H0 if p value greater than 



Depiction of P Value

https://en.wikipedia.org/wiki/P-value

Probability density of each outcome, computed under Null hypothesis
p value is area under curve past observed data point (e.g., sample mean)

E.g., Mario mean of 5, so 
is 6.1. in the “unlikely” 
region?

Observed 
 mean 6.1

Hypo. 
mean 5
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