IMGD 2905

Simple Linear Regression

Chapter 10

Motivation

- Have data (sample, x's. e.g., *playtime*)
- Want to know likely value of next observation (A)
- A. Compute mean y-value (with confidence interval)

 \rightarrow Predict A

 But what if have additional information?

E.g., playtime versus skins owned

 \rightarrow Better prediction!

	Ŷ	× × × × × × × × ×	Α?
--	---	-------------------	----

Motivation

- Have data (sample, x's), based on X
 E.g., playtime versus skins owned
- Want to know likely value of next observation (Y)
- A reasonable to compute mean y-value (with confidence interval)
- B could do same, but there appears to be relationship between X and Y!
- → Predict B (here, use X data to predict Y)
- e.g., "trendline" (regression)

Overview

Broadly, two types of prediction techniques:

- 1. Regression mathematical equation to model, then use model for predictions
 - We'll discuss simple linear regression
- Machine learning branch of AI, use computer algorithms to determine relationships (predictions)
 - CS 4342 Machine Learning

Types of Regression Models

- Explanatory variable *explains* dependent variable
 - Variable X (e.g., skill level) explains Y (e.g., KDA)
 - Can have 1 (simple) or 2+ (multiple)
- Linear if coefficients added, else Non-linear

Outline

- Introduction
- Simple Linear Regression
 - Linear relationship
 - Residual analysis
 - Fitting parameters
- Measures of Variation
- Misc

(done) (next)

Simple Linear Regression

- Goal find a linear (line) relationship between two values
 - E.g., travel time and car speed, KDA and skill,
- First, make sure relationship is linear! How?
- \rightarrow Scatterplot
- (c) no clear relationship
- (b) not a linear relationship
- (a) linear relationship proceed with linear regression

Linear Relationship

From algebra: line in form
 m is slope, b is y-intercept

- Slope (m) is amount Y increases when X increases by 1 unit (specifying units important!)
- Intercept (b) is where line crosses y-axis, or where y-value when x = 0

Size of house related to its market value.

X = square footageY = market value (\$)

- Scatter plot (42 homes)
 - indicates linear
 trend

/	

	А	В	С
1	Home Market Value		
2			
3	House Age	Square Feet	Market Value
4	33	1,812	\$90,000.00
5	32	1,914	\$104,400.00
6	32	1,842	\$93,300.00
7	33	1,812	\$91,000.00
8	32	1,836	\$101,900.00
9	33	2,028	\$108,500.00
10	32	1,732	\$87,600.00

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data

- But how to know?

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data

- But how to know?

Line that gives best fit to data is one that minimizes prediction error → Least squares line (more later)

Y = mX + b

- Scatterplot
- Right click \rightarrow Add Trendline

Format Trendline				
Trendline Options 💌				
A A A A A A A A A A A A A A A A A A A				
Trendline Options				
🚽 🔿 E <u>x</u> ponentia	ıl			
💉 💿 Linear				
C Logarithmi	ic			
<u>∽</u> ○ <u>P</u> olynomia	Or <u>d</u> er 2 ț			
📝 🔿 Po <u>w</u> er				
→ <u>M</u> oving Average	P <u>e</u> riod 2 🌲			
Trendline Name				
Automatic <u>Automatic</u> Linear (Umbrellas sold)				
○ <u>C</u> ustom				
Forecast				
<u>F</u> orward	0.0 period			
<u>B</u> ackward	0.0 period			
Set Intercept	0.0			
✓ Display <u>Equation on chart</u>				
Display <u>R</u> -squared value on chart				

=SLOPE(C4:C45,B4:B45)

 \rightarrow Slope = 35.04

- =INTERCEPT(C4:C45,B4:B45)
- \rightarrow Intercept = 32,600

	A	В	С
1	Home Market Value		
2			
3	House Age	Square Feet	Market Value
4	33	1,812	\$90,000.00
5	32	1,914	\$104,400.00
6	32	1,842	\$93,300.00
7	33	1,812	\$91,000.00
8	32	1,836	\$101,900.00
9	33	2,028	\$108,500.00
10	32	1,732	\$87,600.00

Estimate Y when X = 1800 square feet

Y = 32,600 + 35.04 x (1800) = \$95,672

Simple Linear Regression Example Market value = 32600 + 35.04 x (square feet) Predicts market value better than just average

But before use, examine residuals

Simple Linear Regression

Groupwork

https://web.cs.wpi.edu/~imgd2905/d23/groupwork/11regression/handout.html

Groupwork

- 1. In simple linear regression, the y-intercept (b) represents the:
 - a. predicted value of Y
 - b. change in Y per unit change in X
 - c. predicted value of Y when X=0
 - d. variation around the line

- 2. A simple linear regression model for predicting a player's points (Y) is 6 X + 10, where X is the player's level.
 - How many more points can a player expect to get when they level up?
 - How many points can a level 10 player expect to get?

Outline

- Introduction
- Simple Linear Regression
 - Linear relationship
 - Residual analysis
 - Fitting parameters
- Measures of Variation
- Misc

(done) (done) (next)

Residual Analysis

- Before predicting, confirm that linear regression assumptions hold
 - Variation around line is normally distributed
 - Variation equal for all X
 - Variation independent for all X
- How? Compute residuals (error in prediction)

Residual Analysis

https://www.qualtrics.com/support/stats-iq/analyses/regression-guides/interpreting-residual-plots-improve-regression/

Note that we've colored in a few dots in orange so you can get the sense of how this transformation works.

Variation around line normally distributed ? Variation equal for all X Variation independent for all X?

No clear pattern

Residual Analysis – Good

https://www.qualtrics.com/support/stats-iq/analyses/regression-guides/interpreting-residual-plots-improve-regression/

since

need normally distributeds

Clustered towards middle,

° ∧

pattern

No clear

Residual Analysis – Bad

Clear shape

Dutliers

Outline

- Introduction
- Simple Linear Regression
 - Linear relationship
 - Residual analysis
 - Fitting parameters
- Measures of Variation
- Misc

(done) (done) (<mark>next</mark>)

(done)

Linear Regression Model

https://www.scribd.com/presentation/230686725/Fu-Ch11-Linear-Regression

Random error associated with each observation (Residual)

• Plot all (X_i, Y_i) Pairs

https://www.scribd.com/presentation/230686725/Fu-Ch11-Linear-Regression

- Plot all (X_i, Y_i) Pairs
- Draw a line. But how do we know it is best?

https://www.scribd.com/presentation/230686725/Fu-Ch11-Linear-Regression

- Plot all (X_i, Y_i) Pairs
- Draw a line. But how do we know it is best?

https://www.scribd.com/presentation/230686725/Fu-Ch11-Linear-Regression

- Plot all (X_i, Y_i) Pairs
- Draw a line. But how do we know it is best?

https://www.scribd.com/presentation/230686725/Fu-Ch11-Linear-Regression

- Plot all (X_i, Y_i) Pairs
- Draw a line. But how do we know it is best?

https://www.scribd.com/presentation/230686725/Fu-Ch11-Linear-Regression

Linear Regression Model

 Relationship between variables is linear function

Least Squares Line

- Want to minimize difference between actual y and predicted $\hat{\boldsymbol{y}}$
 - Add up \mathcal{E}_i for all observed y's
 - But positive differences offset negative ones!
 - (remember when this happened for variance?)
 - → Square the errors! Then, minimize (using Calculus)

Least Squares (LS) Line Graphically

Least Squares Line Graphically – Interactive Demo

https://www.desmos.com/calculator/zvrc4lg3cr

Outline

- Introduction
- Simple Linear Regression
- Measures of Variation
 - Coefficient of Determination
 - Correlation
- Misc

(done) (done) (next)

Measures of Variation

Several sources of variation in y

 Error in prediction (unexplained)
 Variation from model (explained)

Sum of Squares of Error (SSE)

Independent variable (x)

- Least squares regression selects line with lowest total sum of squared prediction errors
- Sum of Squares of Error, or SSE
- Measure of unexplained variation

Sum of Squares Regression (SSR)

Independent variable (x)

- Differences between prediction and population mean
 - Gets at variation due to X & Y
- Sum of Squares Regression, or SSR
- Measure of explained variation
Sum of Squares Total

Total Sum of Squares, or SST = SSR + SSE

Coefficient of Determination

 Proportion of total variation (SST) explained by the regression (SSR) is known as the Coefficient of Determination (R²)

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

- Ranges from 0 to 1 (often said as a percent)
 - 1 regression explains all of variation
 - 0 regression explains none of variation

Coefficient of Determination – Visual Representation

 $https://upload.wikimedia.org/wikipedia/commons/thumb/8/86/Coefficient_of_Determination.svg/400 px-Coefficient_of_Determination.svg.png$

Coefficient of Determination Example

• How "good" is regression model? Roughly: $0.8 \le \mathbb{R}^2 \le 1$ strong

Coefficient of Determination Example

How "good" is regression model? Roughly:
 0.8 ≤ R² ≤ 1 strong

 $0 \leq R^2 < 0.5$ weak

How "Good" is the Regression Model?

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

https://xkcd.com/1725/

Relationships Between X & Y

Relationship Strength and Direction – Correlation

- Correlation measures strength and direction of linear relationship
 - -1 perfect neg. to +1 perfect pos.
 - Sign is same as regression slope
 - Denoted R. Why? Square $R = R^2$

POSITIVE CORRELATIOON

https://www.mbaskool.com/2013_images/stories/dec_images/pearson-coeff-bcon.jpg

7FRO CORRELAT

Groupwork

- Introduction
 - Icebreaker: What game are you looking forward to playing this summer?
- Groupwork
 - Think, discuss, write down qualtrics
- Correlation
 - Consider scatterplots
 - Estimate correlation

https://web.cs.wpi.edu/~im gd2905/d23/groupwork/12correlation/handout.html

(Note, would want to use residual analysis before using predictions!)

Correlation Summary

Buying sunglasses *causes* people to buy ice cream?

Importing lemons causes fewer highway fatalities?

https://xkcd.com/552/

Outline

- Introduction
- Simple Linear Regression
- Measures of Variation
- Misc

(done) (done) (done) (next)

Extrapolation versus Interpolation

Y

- Prediction
 - Interpolation –
 within measured
 X-range
 - Extrapolation –
 outside measured
 X-range

https://qph.fs.quoracdn.net/main-qimg-d2972a7aca8c9d11859f42d07fce1799

X

Be Careful When Extrapolating

If extrapolate, make sure have reason to assume model continues

Prediction and Confidence Intervals (1 of 2)

Prediction and Confidence Intervals (2 of 2)

Multiple Independent Variables

 Chronic heart disease (CHD) correlates with smoking

 $-R^2 = 0.5$

- But what about other 50%
- Correlation with exercise? Cholesterol?

Multiple Linear Regression

Chapter 11

Single Linear Regression → Multiple Linear Regression

- Use several independent variables to predict dependent variable
- Weights each predictor based on strength of relationship
- Makes adjustments for inter-relationships among predictors
- Gives overall fit (R²)
- Note: Need independent variables not highly related to each other

 $Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 \dots b_n X_n$

Multiple Linear Regression

Example: hours studied and pre-tests affect final score

$y = b0 + b1^*X1 + b2^*X2 + E$

Multiple Linear Regression Example (1 of 2)

https://www.statology.org/multiple-linear-regression-excel/

 Hours studied and prep exams taken \rightarrow exam score

	Α	В	С
1	hours	prep_exams	score
2	1	1	76
3	2	3	78
4	2	3	85
5	4	5	88
6	2	2	72
7	1	2	69
8	5	1	94
9	4	1	94

20 students

Formulas	Data	Review	View	Help)	🖻 Sł	nare	Comment
	$ \begin{array}{c} $	Filter	Té Da	ata	Forecast ~	Outline		Data Analysis
	Sort	& Filter						Analysis
Data An	alysis						?	×
<u>A</u> nalysis	s Tools							ОК
Covariance A Descriptive Statistics Exponential Smoothing					^		Cancel	
F-Test Two-Sample for Variances Fourier Analysis						<u>H</u> elp		
Histogram Moving Average								
Random Number Generation								
Rank and Percentile								
Regression								

Multiple Linear Regression Example (2 of 2)

- Independent variable
- Covers both independent variables

Regression		? ×
Input	\$C\$1:\$C\$21	ОК
Input <u>Y</u> Range:		Cancel
Input <u>X</u> Range:	\$A\$1:\$B\$21	<u>H</u> elp
✓ Labels	Constant is <u>Z</u> ero	
Con <u>f</u> idence Level:	95 %	
Output options		
• Output Range:	\$D\$2	
O New Worksheet <u>P</u> ly:		
🔿 New <u>W</u> orkbook		
Residuals		
<u>R</u> esiduals	Resi <u>d</u> ual Plots	
Standardized Residuals	Line Fit Plots	
Normal Probability		
<u>N</u> ormal Probability Plots		

Interpret

SUMMARY OUTPUT		•	R ² 0.				
Regression St	atistics	•	Over	all sig	nificar	nt (p < 0.05)
Multiple R	0.857	•	Hour	s sign	ificant		
R Square	0.734			•			
Adjusted R Square	0.703	•	Prep	exam	is not s	significant	
Standard Error	5.366	•	Base	score	withc	out prep 67	'.67
Observations	20	•				5.56 percei	
ANOVA						•	
	df		SS	MS	F	Significance F	
Regression	2		1350.76	675.38	23.46	0.00	\mathbf{b}
Residual	17		489.44	28.79			
Total	19		1840.20				
	Coefficients	Stand	dard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	67.67		2.82	24.03	0.00	61.73	
hours	5.56)	0.90	6.18	0.00	3.66	
prep_exams	-0.60		0.91	-0.66	0.52	-2.53	

Score = 67.67 + 5.56 x hours – 0.60 x prep_exams

Upper 95%

73.61

7.45

1.33

Beyond Linear Regression

- Linear Quadratic Root Cubic
- More complex models beyond just linear

$$Y = mX + b$$

More Complex Models

- Higher order polynomial model has less error
 → A "perfect" fit (no error)
- How does a polynomial do this?

Graphs of Polynomial Functions

Underfit and Overfit

• Underfit analysis does not adequately match data since parameters are missing

→ Both models fit well, but do not *predict* well (i.e., for non-observed values)

 Just right – fit data well "enough" with as few parameters as possible (parsimonious - desired level of prediction with as few terms as possible)

Cross Validation (1 of 2)

Cross Validation (2 of 2)

Model Complexity

Summary

- Can use regression to predict unmeasured values
- Before fit
 - Visual relationship (scatter plot) and residual analysis
- Strength of fit R² and correlation (R)
- Beware
 - Correlation is not causation
 - Extrapolation
- Higher order, more complex models can fit better
 - Beware of overfit \rightarrow less predictive power

-	
	=//
	$-\nu$

https://d3h0owdjgzys62.cloudfront.net/images/3 963/live_cover_art/thumb2x/summary_final.png