IMGD 2905

Simple Linear Regression

Chapter 10

Motivation

- Have data (sample, x's. e.g., playtime)
- Want to know likely value of next observation (A)
A. Compute mean y-value (with confidence interval)
\rightarrow Predict A
- But what if have additional information?

E.g., playtime versus skins owned
\rightarrow Better prediction!

Motivation

- Have data (sample, x’s), based on X
E.g., playtime versus skins owned
- Want to know likely value of next observation (Y)
- A - reasonable to compute mean y-value (with confidence interval)
- B - could do same, but there appears to be relationship between X and Y !
\rightarrow Predict B (here, use X data
 to predict Y)
e.g., "trendline" (regression)

Overview

Broadly, two types of prediction techniques:

1. Regression - mathematical equation to model, then use model for predictions

- We'll discuss simple linear regression

2. Machine learning - branch of AI, use computer algorithms to determine relationships (predictions)

- CS 4342 Machine Learning

Types of Regression Models

- Explanatory variable explains dependent variable
- Variable X (e.g., skill level) explains Y (e.g., KDA)
- Can have 1 (simple) or 2+ (multiple)
- Linear if coefficients added, else Non-linear

Outline

- Introduction
- Simple Linear Regression
- Linear relationship
- Residual analysis
- Fitting parameters
- Measures of Variation
- Misc

Simple Linear Regression

- Goal - find a linear (line) relationship between two values
- E.g., travel time and car speed, KDA and skill,
- First, make sure relationship is linear! How?
\rightarrow Scatterplot
(c) no clear relationship
(b) not a linear relationship
(a) linear relationship - proceed with linear regression

Linear Relationship

- From algebra: line in form

$$
Y=m X+b
$$

$-m$ is slope, b is y-intercept

- Slope (m) is amount Y increases when X increases by 1 unit (specifying units important!)
- Intercept (b) is where line crosses y-axis, or where y-value when $x=0$

Simple Linear Regression Example

- Size of house related to its market value.
$X=$ square footage
$Y=$ market value ($\$$)
- Scatter plot (42 homes)
- indicates linear trend

,	A	B	C
1	Home Market Value		
2			
3	House Age	Square Feet	Market Value
4	33	1.812	\$90,000.00
5	32	1.914	\$104,400.00
6	32	1,842	\$93,300.00
7	33	1.812	\$91,000.00
8	32	1,836	\$101,900.00
9	33	2.028	\$108,500.00
10	32	1.732	\$87,600.00

Simple Linear Regression Example

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data
- But how to know?

$$
Y=m X+b
$$

Simple Linear Regression Example

- Two possible lines shown below (A and B)
- Want to determine best regression line
- Line A looks a better fit to data - But how to know?

$$
Y=m X+b
$$

Line that gives best fit to data is one that minimizes prediction error
\rightarrow Least squares line (more later)

Market Value

Simple Linear Regression Example x 国 Chart

- Scatterplot
- Right click \rightarrow Add Trendline

Simple Linear Regression Example x 国 Formulas

$=$ SLOPE (C4:C45, B4:B45)
\rightarrow Slope $=35.04$
=INTERCEPT(C4:C45,B4:B45)
\rightarrow Intercept $=32,600$

4	A	B	C
1	Home Market Value		
2			
3	House Age	Square Feet	Market Value
4	33	1.812	\$90,000.00
5	32	1.914	\$104,400.00
6	32	1.842	\$93,300.00
7	33	1.812	\$91,000.00
8	32	1,836	\$101,900.00
9	33	2.028	\$108,500.00
10	32	1.732	\$87,600.00

Estimate Y when $X=1800$ square feet

$$
Y=32,600+35.04 \times(1800)=\$ 95,672
$$

Simple Linear Regression Example

 Market value $=32600+35.04 \times$ (square feet) Predicts market value better than just average

But before use, examine residuals

Groupwork

Simple Linear Regression

https://web.cs.wpi.edu/~imgd2905/d23/groupwork/11regression/handout.html

Groupwork

1. In simple linear regression, the y-intercept (b) represents the:
a. predicted value of Y
b. change in Y per unit change in X
c. predicted value of Y when $X=0$
d. variation around the line

2. A simple linear regression model for predicting a player's points (Y) is $6 \mathrm{X}+10$, where X is the player's level.

- How many more points can a player expect to get when they level up?
- How many points can a level 10 player expect to get?

Outline

- Introduction
- Simple Linear Regression
- Linear relationship
- Residual analysis
- Fitting parameters
- Measures of Variation
- Misc

Residual Analysis

- Before predicting, confirm that linear regression assumptions hold
- Variation around line is normally distributed
- Variation equal for all X
- Variation independent for all X
- How? Compute residuals (error in prediction)

Residual Analysis

https://www.qualtrics.com/support/stats-iq/analyses/regression-guides/interpreting-residual-plots-improve-regression/

Note that we've colored in a few dots in orange so you can get the sense of how this transformation works.

Variation around line normally distributed ? Variation equal for all X Variation independent for all X?

Residual Analysis - Good

Residual Analysis - Bad

Outline

- Introduction
- Simple Linear Regression
- Linear relationship
- Residual analysis
- Fitting parameters
- Measures of Variation
- Misc
(done)
(done)
(next)

Linear Regression Model

Random error associated with each observation (Residual)

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Fitting the Best Line

- Plot all $\left(X_{i}, Y_{i}\right)$ Pairs
- Draw a line. But how do we know it is best?

Linear Regression Model

- Relationship between variables is linear function

Least Squares Line

- Want to minimize difference between actual y and predicted \hat{y}
- Add up ε_{i} for all observed y's
- But positive differences offset negative ones!
- (remember when this happened for variance?)
\rightarrow Square the errors! Then, minimize (using Calculus)

$$
\begin{aligned}
& \text { Minimize: } \\
& \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
\end{aligned}
$$

Take derivative
Set to 0 and solve

Least Squares (LS) Line Graphically

LS minimizes $\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}=\hat{\varepsilon}_{1}^{2}+\hat{\varepsilon}_{2}^{2}+\hat{\varepsilon}_{3}^{2}+\hat{\varepsilon}_{4}^{2}$

Least Squares Line Graphically Interactive Demo

Create new situations moving the green data points about the graph.

Line of Best Fit: Click the circle at the left to Show/Hide. Drag RED dots to position the line.

Residuals: Click the circle at the left to Show/Hide.

Squares: Click the circle at the left to Show/Hide.

- Least Squares Regression Line: Click the circle at the left to Show/Hide.

https://www.desmos.com/calculator/zvrc4lg3cr

Outline

- Introduction
- Simple Linear Regression
- Measures of Variation
- Coefficient of Determination
- Correlation
- Misc

Measures of Variation

- Several sources of variation in y
- Error in prediction (unexplained)
- Variation from model (explained)

Break this down (next)

Sum of Squares of Error (SSE)

- Least squares regression selects line with lowest total sum of squared prediction errors
- Sum of Squares of Error, or SSE
- Measure of unexplained variation

Sum of Squares Regression (SSR)

- Differences between prediction and population mean
- Gets at variation due to X \& Y
- Sum of Squares Regression, or SSR
- Measure of explained variation

Sum of Squares Total

- Total Sum of Squares, or SST = SSR + SSE

Coefficient of Determination

- Proportion of total variation (SST) explained by the regression (SSR) is known as the Coefficient of Determination (R^{2})

$$
R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
$$

- Ranges from 0 to 1 (often said as a percent)

1 - regression explains all of variation
0 - regression explains none of variation

Coefficient of Determination Visual Representation

Coefficient of Determination Example

- How "good" is regression model? Roughly:

$$
0.8 \leq R^{2} \leq 1 \quad \text { strong }
$$

Coefficient of Determination Example

- How "good" is regression model? Roughly:
$0.8 \leq R^{2} \leq 1$
$0 \leq R^{2}<0.5$
weak

How "Good" is the Regression Model?

I DON'T TRUST LINEAR REGRESSIONS WHEN ITS HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.
https://xkcd.com/1725/

Relationships Between X \& Y

Relationship Strength and Direction Correlation

- Correlation measures strength and direction of linear relationship
-1 perfect neg. to +1 perfect pos.
- Sign is same as regression slope
- Denoted R. Why? Square $R=R^{2}$

$$
\begin{aligned}
& \text { Pearson's Correlation } \\
& \begin{aligned}
\text { Coefficient } \\
\mathrm{r}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^{2}} \sqrt{(Y-\bar{Y})^{2}}} \leftarrow \quad \begin{array}{c}
\text { Vary } \\
\text { together } \\
\text { Vary }
\end{array} \\
\sqrt{\text { Separately }}
\end{aligned}
\end{aligned}
$$

Where, \bar{X} = mean of X variable $\bar{Y}=$ mean of Y variable

Correlation Examples

Groupwork

- Introduction
- Icebreaker: What game are you looking forward to playing this summer?
- Groupwork
- Think, discuss, write down - qualtrics
- Correlation
- Consider scatterplots
- Estimate correlation
https://web.cs.wpi.edu/~im
gd2905/d23/groupwork/12-
correlation/handout.html

Correlation Examples

??

Correlation Examples

??

??

Correlation Examples

Correlation Examples

Correlation Examples

(Note, would want to use residual analysis before using predictions!)

Correlation Examples

(Note, would want to use residual analysis before using predictions!)

Anscombe's Quartet
https://en.wikipedia.org/wiki/Anscombe\'s quartet

Summary stats: Mean $_{x} 9$
Mean $_{\mathrm{y}} 7.5$
Var $_{x} \quad 11$
Var $_{y} \quad 4.125$
Model: $\mathrm{y}=0.5 \mathrm{x}+3$
$R^{2}=0.69$

Correlation Summary

Correlation is not Causation

Buying sunglasses causes people to buy ice cream?

Correlation is not Causation

Importing lemons causes fewer highway fatalities?

Correlation is not Causation

https://science.sciencemag.org/content/sci/348/6238/980.2/F1.large.jpg?width=800\&height=600\&carousel=1

Correlation is not Causation

SOUNDS LIKE THE CLASS HELPED.

https://xkcd.com/552/

Outline

- Introduction
- Simple Linear Regression
- Measures of Variation
- Misc
(done)
(done)
(done)
(next)

Extrapolation versus Interpolation

- Prediction
- Interpolation within measured X-range
- Extrapolation outside measured X-range

Be Careful When Extrapolating

Prediction and Confidence Intervals (1 of 2)

Prediction and Confidence Intervals (2 of 2)

95\% Confidence Bands

95\% Prediction Bands

Multiple Independent Variables

- Chronic heart disease (CHD) correlates with smoking

$$
-R^{2}=0.5
$$

- But what about other 50\%
- Correlation with exercise? Cholesterol?

Cigarettes Exercise CHD Mortality Cholesterol

Multiple Linear Regression

Single Linear Regression \rightarrow Multiple Linear Regression

- Use several independent variables to predict dependent variable

Single predictor
 $X \longrightarrow Y$

- Weights each predictor based on strength of relationship
- Makes adjustments for inter-relationships among predictors
- Gives overall fit (R^{2})

- Note: Need independent variables not highly related to each other

$$
Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3} . . b_{n} X_{n}
$$

Multiple Linear Regression

Example: hours studied and pre-tests affect final score

$$
y=b 0+b 1^{*} \times 1+b 2 * x 2+E
$$

Multiple Linear Regression Example (1 of 2)

- Hours studied and prep exams taken \rightarrow exam score

	A	B	C
1	hours	prep_exams	score
2	1	1	76
3	2	3	78
4	2	3	85
5	4	5	88
6	2	2	72
7	1	2	69
8	5	1	94
9	4	1	94

20 students

Multiple Linear Regression Example (2 of 2)

- Independent variable
- Covers both independent variables

Interpret

SUMMARY OUTPUT		- $R^{2} 0.734$				
Regression Statistics		- Overall significant ($\mathrm{p}<0.05$)				
Multiple R	$\begin{aligned} & 0.857 \\ & 0.734 \\ & \hline \end{aligned}$	- Hours significant				
R Square		- Prep exams not significant				
Adjusted R Square	0.703					
Standard Error	5.366	- Base score without prep 67.67				
Observations	20	- Each hour gains 5.56 percent				
ANOVA						
	$d f$	SS	MS	F	Significance F	
Regression	2	1350.76	675.38	23.46	0.	
Residual	17	489.44	28.79			
Total	19	1840.20				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	67.67	2.82	24.03	0.00	61.73	73.61
hours	5.56) 0.90	6.18	0.0	3.66	7.45
prep_exams	-0.60	0.91	-0.66	0.52	-2.53	1.33

Score $=67.67+5.56 x$ hours $-0.60 \times$ prep_exams

Beyond Linear Regression

- More complex models - beyond just linear

$$
Y=m X+b
$$

More Complex Models

$y=12 x+9$

Complex

$y=18 x^{4}+13 x^{3}-9 x^{2}+3 x+20$

- Higher order polynomial model has less error
\rightarrow A "perfect" fit (no error)
- How does a polynomial do this?

Graphs of Polynomial Functions

Cubic Function (deg. $=3$)
https://cdn-images-1.medium.com/max/2400/1*pjilpg20-MZds_3flVhf-Dw.jpeg

Linear Function (degree = 1)

Quartic Function (deg. $=4$)

Quadratic Function
(degree = 2)

Quintic Function (deg. $=5$)

Higher degree, more potential "wiggles"
But should you use?

Underfit and Overfit

hups:/fistack.imgur.com/torit.png

Size
$\theta_{0}+\theta_{1} x+\theta_{2} x^{2}$
Just Right

$\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\theta_{4} x^{4}$
Overfit

- Overfit analysis

Test \rightarrow Cross Validation

 be justified- Underfit analysis does not adequately match data since parameters are missing
\rightarrow Both models fit well, but do not predict well (i.e., for non-observed values)
- Just right - fit data well "enough" with as few parameters as possible (parsimonious - desired level of prediction with as few terms as possible)

Cross Validation (1 of 2)

Total number of examples

Training Set
 Test Set

Use to build model

Cross Validation (2 of 2)

Repeat for different slices

- Overfit and Underfit will both have lower accuracy than "just right"

Summary

- Can use regression to predict unmeasured values
- Before fit
- Visual relationship (scatter plot) and residual analysis
- Strength of fit - R^{2} and correlation (R)
- Beware
- Correlation is not causation
- Extrapolation
- Higher order, more complex models can fit better
- Beware of overfit \rightarrow less predictive power

