IMGD 2905

Probability

Chapters 4 \& 5
THIRD EDITION

Overview

- Statistics important for game analysis
- Probability important for statistics
- So, understand some basic probability
- Also, probability useful for game development

Groupwork

- What are some examples of probabilities needed for game development?
- Provide a specific example
- Icebreaker, Groupwork, Questions https://web.cs.wpi.edu/~imgd2905/d23/groupwork/5probabilities/handout.html

Overview

- Statistics important for game analysis
- Probability important for statistics
- So, understand some basic probability
- Also, probability itself useful for game development

- Probabilities for game development?
- Examples?

Overview

- Statistics important for game analysis
- Probability important for statistics
- So, understand some basic probability
- Also, probability itself useful for game development
- Probabilities for game development?
- Probability attack will succeed
- Probability loot from enemy contains rare item
- Probability enemy spawns at particular time
- Probability action (e.g., building a castle) takes particular amount of time
- Probability players at server

Outline

- Introduction
- Probability
- Probability Distributions

Probability Definitions (1 of 3)

- Probability - way of assigning numbers to outcomes to express likelihood of event
- Event - outcome of experiment or observation
- Elementary - simplest type for given experiment. independent
- Joint/Compound - more than one elementary

https://cdn.Kastatic.org/googleusercontent/ZOTuLq2KolavsffDXSbLqioswnlCrC13cKGG68wK91jrTiXzRqvfq71pWNzcwgzlpEOI8YmMafp4K4zOOsanvXu
- Roll die (d6) and get 6
- elementary event
- Roll die (d6) and get even number
- compound event, consists of elementary events 2,4 , and 6
- Pick card from standard deck and get queen of spades
- elementary event
- Pick card from standard deck and get face card
- compound event
- Observe players logging in to MMO server and see if two people log in less than 15 minutes apart
- compound event

We'll treat/compute probabilities of elementary versus compound separately

Probability - Definitions (2 of 3)

- Exhaustive set of events
- set of all possible outcomes of experiment/observation
- Mutually exclusive sets of events - elementary events that do not overlap
- Roll d6: Events: 1, 2
- not exhaustive, mutually exclusive
- Roll d6: Events: 1, 2, 3, 4, 5, 6
- exhaustive, mutually exclusive
- Roll d6: Events: get even number, get number divisible by 3 , get a 1 or get a 5
- exhaustive, but overlap
- Observe logins: time between arrivals <10 seconds, $10+$ and <15 seconds inclusive, or 15+ seconds
- exhaustive, mutually exclusive
- Observe logins: time between arrivals <10 seconds, $10+$ and <15 seconds inclusive, or 10+ seconds
- exhaustive, but overlap

Probability - Definitions (3 of 3)

- Probability - likelihood of event to occur, ratio of favorable cases to all cases
- Set of rules that probabilities must follow
- Probabilities must be between 0 and 1 (but often written/said as percent)
- Probabilities of set of exhaustive, mutually exclusive events must add up to 1
- e.g., d6: events 1, 2, 3, 4, 5, 6. Probability of $1 / 6^{\text {th }}$ to each, sum of $P(1)+P(2)+P(3)+P(4)+P(5)+P(6)=1$
\rightarrow legal set of probabilities
- e.g., d6: events $1,2,3,4,5,6$. Probability of $1 / 2$ to roll $1,1 / 2$ to roll 2 , and 0 to all the others sum of $P(1)+\ldots+P(6)=0.5+0.5$ $+0 \ldots+0=1$
\rightarrow Also legal set of probabilities
- Not how honest d6's behave in real life!

How to Assign Probabilities?

Assigning Probabilities

- Classical (by theory)
- In some cases, exhaustive, mutually exclusive outcomes equally likely \rightarrow assign each outcome probability of $1 / n$
- e.g., d6: 1/6, Coin: prob heads $1 / 2$, tails $1 / 2$, Cards: pick Ace $1 / 13$
- Empirically (by observation)
- Obtain data through measuring/observing
- e.g., Watch how often people play PUBG in FL222 versus some other game. Say, 30\% PUBG. Assign that as probability
- Subjective (by hunch)
- Based on expert opinion or other subjective method
- e.g., eSports writer says probability Fnatic (European LoL team) will win World Championship is 25%

Rules About Probabilities (1 of 2)

- Complement: A an event. Event "Probability A does not occur" called complement of A, denoted A^{\prime}

$$
P\left(A^{\prime}\right)=1-P(A) \quad \leftarrow W h y ?
$$

- e.g., d6: $P(6)=1 / 6$, complement is $P\left(6^{\prime}\right)$ and probability of "not 6 " is $1-1 / 6$, or $5 / 6$.
- Note: Value often denoted p, complement is q
- Mutually exclusive: Have no simple outcomes in common - can't both occur in same experiment $P(A$ or $B)=P(A)+P(B)$
- "Probability either occurs"
- e.g., d6: $P(3$ or 6$)=P(3)+P(6)=1 / 6+1 / 6=2 / 6$

Rules About Probabilities (2 of 2)

- Independent: Probability that one occurs doesn't affect probability that other occurs
- e.g., 2d6: $A=$ die 1 get $5, B=$ die 2 gets 6 . Independent, since result of one roll doesn't affect roll of other
- "Probability both occur"

$$
P(A \text { and } B)=P(A) \times P(B)
$$

- e.g., 2d6: prob of "snake eyes" is $P(1) \times P(1)=1 / 6 \times 1 / 6=1 / 36$
- Not independent: One occurs affects probability that other occurs
- Probability both occur

$$
P(A \text { and } B)=P(A) \times P(B \mid A)
$$

- Where $P(B \mid A)$ means prob B given A happened
- e.g., PUBG chance of getting top 10 is 10%. Chance of using only stock gun 50%. You might think that:
- P (top 10) $\times \mathrm{P}($ stock $)=0.10 \times 0.50=0.05$

But likely not independent. P(top | stock) < 5\%. So, need nonindependent formula

- P (top) ${ }^{*} \mathrm{P}$ (top | stock)

Probability Example

- Draw, put back. Draw. Not King either card?

$$
\begin{gathered}
P\left(K^{\prime}\right) \times P\left(K^{\prime}\right) \\
=3 / 4 \times 3 / 4=9 / 16
\end{gathered}
$$

- Draw, don't put back. Draw. Not King either card?

$$
\begin{aligned}
& P\left(K^{\prime}\right) \times P\left(K^{\prime} \mid K^{\prime}\right) \\
& \quad=3 / 4 \times(1-1 / 3) \\
& =3 / 4 \times 2 / 3=6 / 12=1 / 2
\end{aligned}
$$

- Draw, don't put back. Draw. King $2^{\text {nd }}$ card?

$$
\begin{aligned}
& P\left(K^{\prime}\right) \times P\left(K \mid K^{\prime}\right) \\
& =3 / 4 \times 1 / 3 \\
& =3 / 12=1 / 4
\end{aligned}
$$

$$
\begin{aligned}
P(\mathrm{~K} \text { or } \mathrm{Q}) & =P(\mathrm{~K})+\mathrm{P}(\mathrm{Q}) \\
& =1 / 4+1 / 4=1 / 2
\end{aligned}
$$

Outline

- Intro
- Probability
- Probability Distributions
(done)
(done)
(next)

Probability Distributions

- Probability distribution values and likelihood (expected value) that random variable can take
- Why? If can model mathematically, can use to predict occurrences
- e.g., probability slot machine pays out on given day
- e.g., probability game server can host player this hour
- e.g., probability certain game mode is chosen by player

https://goo.gl/jqomFI
Types discussed: Uniform (discrete)
Binomial (discrete)
Poisson (discrete)
Normal (continuous)
- Also, some statistical techniques for some distributions only

Remember empirical rule?
What distribution did it apply to?

Uniform Distribution

Mean $=(1+6) / 2=3.5$
Variance $=\left((6-1+1)^{2}-1\right) / 12$
$=2.9$
Std Dev $=$ sqrt(Variance) $=1.7$

Note - mean is also the expected value (if you did a lot of trials, would be average result)

"So what?"

- Can use known formulas

Mean	$\frac{a+b}{2}$
Median	$\frac{a+b}{2}$
Mode	N / A
Variance	$\frac{(b-a+1)^{2}-1}{12}$

Binomial Distribution Example (1 of 3)

A coin toss is a binomial random variable

- Suppose toss 3 coins
- Random variable

$$
X=\text { number of heads }
$$

- Want to know probability of exactly 2 heads

$$
P(X=2)=?
$$

How to assign probabilities?

Binomial Distribution Example (1 of 3)

- Suppose toss 3 coins
- Random variable

$$
X=\text { number of heads }
$$

- Want to know probability of exactly 2 heads

$$
P(X=2)=?
$$

How to assign probabilities?

- Could measure (empirical)
- Q: how?
- Could use "hunch" (subjective)
- Q: what do you think?
- Could use theory (classical)
- Math using our probability rules (not shown)
- Enumerate (next)

Binomial Distribution Example (2 of 3)

http://web.mnstate.edu/peil/MDEV102/U3/S25/Cartesian3.PNG

All equally likely (p is $1 / 8$ for each)
$\rightarrow P(H H T)+P(H T H)+P(T H H)=3 / 8$

Can draw histogram of number of heads

Binomial Distribution Example (3 of 3)

$$
n=1
$$

number of heads
number of heads

Flip n coins. Count the number of heads.
http://www.mathnstuff.com/math/spoken/here/2class/90/binom2.gif

Binomial Distribution (1 of 2)

- In general, any number of trials (n) \& any probability of successful outcome (p) (e.g., heads)

http://www.vassarstats.net/textbook/f0603.gif
- Characteristics of experiment that gives random number with binomial distribution:
- Experiment of n identical trials.
- Trials are independent
- Each trial only two possible outcomes, Success or Fail
- Probability of Success each trial is same, denoted p
- Random variable of interest (X) is number of Successes in n trials

Binomial Distribution (2 of 2)

"So what?"

- Can use known formulas

$$
\begin{aligned}
& M E A N: \mu=n p \\
& \text { Variance }: \sigma^{2}=n p q \\
& S D: \sigma=\sqrt{n p q}
\end{aligned}
$$

Excel: binom.dist()
binom.dist(x,trials,prob,cumulative)
-2 heads, 3 flips, coin, discrete
=binom.dist(2, 3, 0.5, FALSE)
$=0.375$ (i.e., 3/8)

Binomial Distribution Example

- Each row is like a coin flip
- right = "heads"
- left = "tails"
- Bottom axis is number of heads
- Gives and "empirical" way to estimate $P(X)$ $\operatorname{bin}(\mathrm{X}) \div$
$\operatorname{sum}(\operatorname{bin}(0)+\operatorname{bin}(1)+\ldots)$

https://www.mathsisfun.com/data/quincunx.html

Poisson Distribution

- Distribution of probability of x events occurring in certain interval (broken into units)
- Interval can be time, area, volume, distance
- e.g., number of players arriving at server lobby in 5minute period between noon-1pm
- Requires

1. Probability of event same for all time units
2. Number of events in one time unit independent of number of events in any other time unit
3. Events occur singly (not simultaneously). In other words, as interval unit gets smaller, probability of two events occurring approaches 0

Poisson Distributions?

Could Be Poisson

- Number of groups arriving at restaurant during dinner hour
- Number of logins to MMO during prime time
- Number of defects (bugs) per 100 lines of code
- People arriving at cash register (if they shop individually)

Not Poisson

- Number of people arriving at restaurant during dinner hour
- People frequently arrive in groups
- Number of students registering for course in
Workday per hour on first day of registration
- Prob not equal - most register in first few hours
- Not independent - if too many register early, system crashes

Phrase people use is
random arrivals

Poisson Distribution

- Distribution of probability of x events occurring in certain interval

$$
P(X=x)=\mathrm{e}^{-\lambda} \frac{\lambda^{x}}{x!}
$$

- $X=$ a Poisson random variable
- $x=$ number of events whose probability you are calculating
- $\lambda=$ the Greek letter "lambda," which represents the average number of events that occur per time interval
- $\mathrm{e}=\mathrm{a}$ constant that's equal to approximately 2.71828

Poisson Distribution Example (1 of 2)

1. Number of games student plays per day averages 1 per day
2. Number of games played per day independent of all other days
3. Can only play one game at a time

What's probability of playing 2 games tomorrow? In this case, the value of $\lambda=1$, want $\mathrm{P}(\mathrm{X}=2)$

$$
P(X=2)=\mathrm{e}^{-1} \frac{1^{2}}{2!}=0.1839
$$

Poisson Distribution Example (2 of 2)

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

$$
P(X=x)=\mathrm{e}^{-\lambda} \frac{\lambda^{x}}{x!}=? ? ?
$$

Poisson Distribution Example (2 of 2)

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

Poisson Distribution Example (2 of 2)

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

$$
P(x=x)=\mathrm{e}^{-\lambda} / \lambda^{60} \lambda^{x!}=? ? ?
$$

https://stattrek.com/online-calculator/poisson.aspx

Poisson random variable (x)	
Average rate of success	
Poisson Probability: $\mathrm{P}(\mathrm{X}=60)$	0.02010
Cumulative Probability: $\mathrm{P}(\mathrm{X}<60)$	0.90774
Cumulative Probability: $\mathrm{P}(\mathrm{X} \leq 60)$	0.92784
Cumulative Probability: $\mathrm{P}(\mathrm{X}>60)$	0.07216
Cumulative Probability: $\mathrm{P}(\mathrm{X} \geq 60)$	0.09226

Poisson Distribution Example (2 of 2)

https://stattrek.com/online-calculator/poisson.aspx

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

Poisson Distribution Example (2 of 2)

https://stattrek.com/online-calculator/poisson.aspx

- New England city
- Average new COVID-19 cases 50/day
- Local hospital has 60 free beds
- What is the probability more than 60 in one day?

Q: How do we get greater than 60?

$$
\begin{gathered}
P(0)+P(1)+\ldots+P(60) \rightarrow P(\leq 60) \\
P(>60)=1-P(\leq 60)
\end{gathered}
$$

Poisson Distribution

- "So what?" \rightarrow Known formulas

$$
P(X=x)=\mathrm{e}^{-\lambda} \frac{\lambda^{x}}{x!}
$$

- Mean $=\lambda$
- Variance $=\lambda$
- Std Dev = sqrt (λ)

Excel: poisson.dist()
 poisson.dist(x,mean, cumulative) mean 50 per day, 60 beds, chance >60 ?
= 1 - POISSON.DIST(60, 50, TRUE) $=0.07216$
e.g., Games \rightarrow may want to know likelihood of $1.5 x$ average people arriving at server

Expected Value - Formulation

- Expected value of discrete random variable is value you'd expect after many experimental trials. i.e., mean value of population
Value:
$\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \ldots & x_{n}\end{array}$
Probability: $\quad P\left(x_{1}\right) P\left(x_{2}\right) P\left(x_{3}\right) \ldots \quad P\left(x_{n}\right)$
- Compute by multiplying each value by probability and summing

$$
\begin{aligned}
\mu_{\mathrm{x}} & =\mathrm{E}(\mathrm{X})=x_{1} P\left(x_{1}\right)+x_{2} P\left(x_{2}\right)+\ldots+x_{n} P\left(x_{n}\right) \\
& =\sum x_{i} P\left(x_{i}\right)
\end{aligned}
$$

Expected Value Example Gambling Game

- Pay $\$ 3$ to enter
- Roll 1d6 \rightarrow 6? Get \$7 1-5? Get \$1
- What is expected payoff?

$$
\begin{array}{llll}
\text { Outcome } & \text { Payoff } & P(x) & x P(x) \\
\hline 1-5 & \$ 1 & \\
6 & \$ 7 &
\end{array}
$$

Expected Value Example Gambling Game

- Pay $\$ 3$ to enter
- Roll 1d6 \rightarrow 6? Get \$7 1-5? Get \$1
- What is expected payoff?

$$
\begin{array}{llll}
\text { Outcome } & \text { Payoff } & \mathrm{P}(\mathrm{x}) & \mathrm{xP}(\mathrm{x}) \\
\hline 1-5 & \$ 1 & 5 / 6 & \$ 5 / 6 \\
6 & \$ 7 & 1 / 6 & \$ 7 / 6
\end{array}
$$

$$
E(X)=
$$

Expected Value Example Gambling Game

- Pay $\$ 3$ to enter
- Roll 1d6 \rightarrow 6? Get \$7 1-5? Get \$1
- What is expected payoff? Expected net?

\[

\]

$$
E(\text { net })=
$$

Expected Value Example Gambling Game

- Pay $\$ 3$ to enter
- Roll 1d6 \rightarrow 6? Get \$7 1-5? Get \$1
- What is expected payoff? Expected net?

$$
\begin{aligned}
& \text { Outcome Payoff } \quad \mathrm{P}(\mathrm{x}) \times \mathrm{xP}(\mathrm{x}) \\
& \text { 1-5 } \quad \$ 1 \quad 5 / 6 \quad \$ 5 / 6 \\
& 6 \quad \$ 7 \quad 1 / 6 \quad \$ 7 / 6 \\
& E(X)=\$ 5 / 6+\$ 7 / 6=\$ 12 / 6=\$ 2 \\
& E(\text { net })=E(X)-\$ 3=\$ 2-\$ 3=\$-1
\end{aligned}
$$

Outline

- Intro
- Probability
- Probability Distributions
- Discrete
(done)

So far random variable could take only discrete set of values

Q: What does that mean?
Q: What other distributions might we consider?

Outline

- Intro
- Probability
- Probability Distributions
- Discrete
- Continuous
(done)
(next)

Continuous Distributions

- Many random variables are continuous
- e.g., recording time (time to perform service) or measuring something (height, weight, strength)
- For continuous, doesn't make sense to talk about $P(X=x) \rightarrow$ continuum of possible values for X
- Mathematically, if all non-zero, total probability infinite (this violates our rule)
- So, continuous distributions have probability density, $f(x)$
\rightarrow How to use to calculate probabilities?
- Don't care about specific values
- e.g., P(Height $=60.1946728163$ inches)
- Instead, ask about range of values
- e.g., P(59.5" < X < 60.5")
- Uses calculus (integrate area under curve) (not shown here)

Q: What continuous distribution is especially important?

Normal Distribution (1 of 2)

- "Bell-shaped" or "Bell-curve"
- Distribution from $-\infty$ to $+\infty$
- Symmetric
- Mean, median, mode all same
- Mean determines location, standard deviation determines "width"
- Super important!
- Lots of distributions follow a normal curve
- Basis for inferential statistics (e.g., statistical tests)
- "Bridge" between probability

https://www.mathsisfun.com/data/images/normal-distribution-2.svg

Normal Distribution (2 of 2)

- Many normal distributions (see right)
- However, "the" normal distribution refers to standard normal
- Mean (μ) = 0
- Standard deviation (σ) = 1
- Can convert any normal to the standard normal
- Given sample mean (\bar{x})
- Sample standard dev. (s)

Many normal distributions

Standard Normal Distribution

- Standardize
- Subtract sample mean ($\overline{\mathrm{x}}$)
- Divide by sample standard deviation (s)
- Mean $\mu=0$
- Standard Deviation $\sigma=1$
- Total area under curve = 1
- Sounds like probability!
X㸷 =norm.dist()
$\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$

Normal
Distribution

$$
Z=\frac{X-\mu}{\sigma}=\frac{6.2-5}{10}=.12
$$

Standardized Normal Distribution

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

http://images.slideplayer.com/10/2753952/slides/slide_2.jpg

Use to predict how likely an observed sample is given population mean (next)

Using the Standard Normal

- Suppose League of Legends Champion released once every 24 days on average, standard deviation of 3 days
- What is the probability Champion released 30+ days?
- $x=30, \overline{\mathrm{x}}=24, \mathrm{~s}=3$

$$
\begin{aligned}
Z & =(x-\bar{x}) / s \\
& =(30-24) / 3 \\
& =2
\end{aligned}
$$

- Want to know $P(Z>2)$

http://ci.columbia.edu/ci/premba_test/c0331/s6/s6_4.html

Q: how? Hint: what rule might help?

Using the Standard Normal

- Suppose League of Legends Champion released once every 24 days on average, standard deviation of 3 days
- What is the probability Champion released 30+ days?
- $x=30, \bar{x}=24, s=3$

$$
\begin{aligned}
Z & =(x-\bar{x}) / s \\
& =(30-24) / 3 \\
& =2
\end{aligned}
$$

- Want to know $P(Z>2)$

http://ci.columbia.edu/ci/premba_test/c0331/s6/s6_4.html
=norm.dist(x,mean, stddev, cumulative)
$=1$ - norm.dist(30,24,3,true)

Empirical Rule. Or use table (Z-table)
$\rightarrow 5 \% / 2=2.5 \%$ likely

Test for Normality

- Why?
- Can use Empirical Rule
- Use some inferential statistics (parametric tests)
- How?

1. Measure skewness (next)
2. Looks normal

- Histogram
- Normal probability plot (QQ plot) - graphical technique to see if data set is approximately normally distributed

3. Statistical test

- Kolmogorov-Smirnov test (K-S) or Shapiro-Wilk (S-W) that compare to normal (won't do, but ideas in next slide deck)

Measurine Skewness

- Measure of symmetry of distribution
- Normal distribution is perfectly symmetric, skewness 0
- Easy equations:
$\frac{\text { mean - mode }}{\text { standard deviation }}$

$$
=\operatorname{skew}(\mathrm{A} 1: \mathrm{A} 10)
$$

$\frac{n}{(n-1)(n-2)} \sum\left(\frac{x_{j}-\bar{x}}{s}\right)^{3}$

X畦
"Fisher-Pearson standardized moment"

- "How much" is not typical?
- Somewhat arbitrary
- Less than -1 or greater than +1
- Highly skewed
- Between [-1, -0.5] or [0.5, +1]
- Moderately skewed
- Between -0.5 and 0.5
- Symmetric
[Note, related "Kurtosis" is how clumped]

Skewness Examples

Normality Testing with a Histogram

- Use histogram shape to look for "bell curve"

http://2.bp.blogspot.com/_g8gh7l4zSt4/TR85eGJIMfI
/AAAAAAAAAQs/PaOHJsjonPM/s1600/histo.JPG

No

Normality Testing with a Histogram

http://www.sascommunity.org/planet/blog/category/statistical-thinking/
Random Normal Samples of Size 15

Q: What distributions are these from? Any normal?

Normality Testing with a Histogram

http://www.sascommunity.org/planet/blog/category/statistical-thinking/
Random Normal Samples of Size 15

They are all from normal distribution! Suffer from:

- Binning (not continuous)
- Few samples (15) - we'll talk about sample size next slide deck

Normality Testing with a QuantileQuantile Plot

- Percentiles (quantiles) of one versus another
- If line \rightarrow same distribution

1. Order data
2. Compute Z scores (normal)
3. Plot data (y axis) versus Z (x axis)

- Normal? \rightarrow line

Quantile-Quantile Plot Example

- Do the following values come from a normal distribution?

$$
\text { 7.19, 6.31, 5.89, 4.5, 3.77, 4.25, 5.19, 5.79, } 6.79
$$

1. Order data
2. Compute Z scores

Show each
step, next
3. Plot data versus Z

Quantile-Quantile Plot Example Order Data

Unordered

7.19
6.31
5.89
4.50
3.77
4.25
5.19
5.79
6.79

Quantile-Quantile Plot Example Compute Z scores

$$
\begin{array}{r}
10 \%=? \\
20 \%=? \\
30 \%=? \\
40 \%=? \\
50 \%=0 \\
60 \%=? \\
70 \%=? \\
80 \%=? \\
90 \%=?
\end{array}
$$

=NORMSINV (area) - provide Z for area under standard normal curve =NORMSINV(.80)
$=0.841621$

Quantile-Quantile Plot Example Compute Z scores

Quantile-Quantile Plot Example - Plot

Linear? \rightarrow Normal

Quantile-Quantile Plots in Excel

Mostly, a manual process. Do as per above.
Example of step by step process (with spreadsheet): http://facweb.cs.depaul.edu/cmiller/it223/normQuant.html

4	A	B	C	D	E	F	G	H	1	J	K	L	M	N
1	QQ Plot													
2														
3	Data		QQ Tables											
4	-5.2													
5	-3.9		Count	8	16									
6	-2.1		Mean	0.375										
7	0.2		Std Dev	3.894593										
8	1.1													
9	2.7		Interval	Data	Std Norm	Std Data								
10	4.9		1	-5.2	-1.53412	-1.43147								
11	5.3		3	-3.9	-0.88715	-1.09768						2	4	6
12			5	-2.1	-0.48878	-0.6355								
13			7	0.2	-0.15731	-0.04493								
14			9	1.1	0.157311	0.186156								
15			11	2.7	0.488776	0.596981								
16			13	4.9	0.887147	1.161867								
17			15	5.3	1.534121	1.264574								

Examples of Normality Testing with a Quantile-Quantile Plot

