Presenting Data

Chapter 2
Outline

• Types of Charts
• Game Analytics Examples
• Guidelines for Charts
Tables

• Generally, **independent** variable in left column and **dependent** variables next

Table 1. Number of student on campus and off by year

<table>
<thead>
<tr>
<th>Class rank</th>
<th>Do you live on campus?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off-campus</td>
</tr>
<tr>
<td>Freshman</td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td></td>
</tr>
<tr>
<td>Senior</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>231</td>
</tr>
</tbody>
</table>

Checklist

• Number and caption
• Units labeled (as appropriate)
• Minimal vertical lines (or none)
• Lines only to break apart areas (or use Bold)

Make sure to consider *message*. Often much clearer in chart!
“Right” Chart Depends on Variable Type

- **Qualitative** (Categorical) variables
 - Can have states or subclasses
 - e.g., position: [striker, goalie, midfield]
 - Can be ordered or unordered
 - e.g., bronze, silver, gold → **ordered**
 - e.g., support, warrior, specialist → **unordered**

- **Quantitative** (Numeric) variables
 - Numeric levels
 - **Discrete** or **continuous**
 - e.g., goals in season, speed in meters
 - e.g., takedowns, win percentage
Categorical: Bar Chart (1 of 2)

- Chart containing rectangles ("bars") where length represents count, amount, or percent (aka "column chart")
- Better than table for comparing numbers

[Graph showing Olympic Games Hosted by Continent]

https://www.kristakingmath.com/blog/bar-graphs-and-pie-charts
Categorical: Bar Chart (2 of 2)

- Chart containing rectangles ("bars") where length represents count, amount, or percent

![Bar chart showing counts for Europe, North America, Asia, Australia, and South America.](https://www.kristakingmath.com/blog/bar-graphs-and-pie-charts)

![Bar chart showing counts for Summer games and Winter games in Europe, North America, Asia, Australia, and South America.](https://www.kristakingmath.com/blog/bar-graphs-and-pie-charts)
Categorical: Pareto Chart

- Bar chart, arranged most to least frequent
- Line showing cumulative percent
- Helps identify most common

Sort by column D (Data -> Sort high to low)
New column E for percent \[=\text{D2/\text{SUM(D$2:D$11)}}\]
Note: \$ “locks” value in (e.g., D$2 versus D2)
New column F for running \[=\text{SUM(E}$2\text{E2)}\]
Select B, D and F. Insert “combo chart”
Categorical: Pie Chart

- Wedge-shaped areas ("pie slices") – represent count, amount or percent of each category from whole
- Compare relative amounts at a glance
- Best if **few slices** since quantifying "size" of pie difficult
- Comparing pies also difficult

"The Effects of Latency and Jitter on a First Person Shooter: Team Fortress 2"

http://www.cs.wpi.edu/~claypool/iqp/tf2/
Histogram

Bar chart for grouped numerical data
No (or small) gaps between adjacent bars

Select GPA data
Insert → Statistics Chart → Histogram
Can adjust bins, overflow/underflow
Time Series Plot

- Associate data with date
- Line graph with dates (proportionally spaced!)

http://www.soundandvision.com/content/violence-and-video-games

Sel. year and majors
Insert ➔ Line Chart ➔ More Line Charts
Two Variables – Scatter Plot

- Two numerical variables, one on each axis
- Reveal patterns in relationship
- Setup “right” models (later)

“Intelligent Simulation of Worldwide Application Distribution for OnLive’s Server Network”

http://www.cs.wpi.edu/~claypool/mqp/onlive/

Select two of {win, pick, ban}
Insert → scatter plot
Radar Chart (1 of 2)

- Also called “star”, “spider”, “web” or “kiviat” charts
- Good for quick visual comparison, especially when axes unequal

Select top line {win, pick, ban} + 3 rows (Ctrl-select) Insert ➔ Other ➔ Radar scatter plot

Note: need to normalize data to scale Axes
Insert column E (“B Norm”) =E2/MAX(E$2:E42)
Copy and paste down
Radar Charts (2 of 2)

- Note, axes themselves hard to read values
- Value is to compare shapes

https://www.data-to-viz.com/caveat/spider.html
Many More Charts!

https://en.wikipedia.org/wiki/Chart

- Bubble
- Waterfall
- Tree
- Gap
- Polar
- Violin
- Candlestick
- Kagi
- Gantt
- Nolan
- Pert
- Smith
- Skyline
- Vowel
- Nomogram
- Natal

- If common chart effective for message, use
- Otherwise, learn/use other charts as needed
- But remember – may need to explain how to read
Outline

• Types of Charts (done)
• Game Analytics Examples (next)
• Guidelines for Charts
Game Analytics Charts

- Player choices (e.g., build units)
- Density of activities (e.g., where spend time on map)
- Movement through levels
Figure 1. Pie-charts show which types of towers have been built on the different building lots. The radius of the pie-chart is proportional to the number of towers built (Kayali, et al., 2014). (Custom game, comparative study)
Player Location – Heat Map (1 of 2)

Figure 2. (a) Heatmap of death locations on the Team Fortress 2 map Goldrush. (b) Heatmap showing locations where players of a tower defense game collected coins dropped by defeated enemies (Kayali, et al., 2014).
Player Location – Heat Map (2 of 2)

Assassin’s Creed

Where play testers failed

Result: Make red areas easier

Note, Heat Map for Tables, Too!

Excel tutorial at: https://trumpexcel.com/heat-map-excel/

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>January</td>
<td>600</td>
<td>708</td>
</tr>
<tr>
<td>3</td>
<td>February</td>
<td>607</td>
<td>984</td>
</tr>
<tr>
<td>4</td>
<td>March</td>
<td>901</td>
<td>886</td>
</tr>
<tr>
<td>5</td>
<td>April</td>
<td>608</td>
<td>615</td>
</tr>
<tr>
<td>6</td>
<td>May</td>
<td>715</td>
<td>833</td>
</tr>
<tr>
<td>7</td>
<td>June</td>
<td>520</td>
<td>663</td>
</tr>
<tr>
<td>8</td>
<td>July</td>
<td>731</td>
<td>521</td>
</tr>
<tr>
<td>9</td>
<td>August</td>
<td>709</td>
<td>663</td>
</tr>
<tr>
<td>10</td>
<td>September</td>
<td>633</td>
<td>863</td>
</tr>
<tr>
<td>11</td>
<td>October</td>
<td>533</td>
<td>651</td>
</tr>
<tr>
<td>12</td>
<td>November</td>
<td>996</td>
<td>958</td>
</tr>
<tr>
<td>13</td>
<td>December</td>
<td>792</td>
<td>717</td>
</tr>
</tbody>
</table>

Red means sales are low.
Movement (1 of 2)

(game: Infinite Mario, clone of Super Mario Bros.)

Figure 4. Examples of path visualizations coupled with color-coding to communicate additional information. Top: color coding reflects the reported expertise of players obtained through a pre-game survey. Middle: colors depict the state in which the player’s character currently resides in. Bottom: the color-gradient reflects physiological data measured in the form of galvanic skin response (Mirza-Babaei, et al., 2014).
Figure 5. Left: Player movement between regions, cities, and battlegrounds on the World of Warcraft continent Outland. Right: Corresponding matrix view with cells colored according to the number of players moving from one area to another.
Outline

• Types of Charts (done)
• Game Analytics Examples (done)
• Guidelines for Charts (next)

https://xkcd.com/1945/
Guidelines for Good Charts (1 of 7)

- **Require minimum effort from reader**
 - Perhaps *most* important metric
 - Given two, can pick one that takes less reader effort

![Diagram](image_url)
Guidelines for Good Charts (2 of 7)

- **Maximize information**
 - Make self-sufficient
 - Key words in place of symbols
 - e.g., “Gold IV” and not “Player A”
 - e.g., “Daily Games Played” not “Games Played”
 - Axis labels as informative as possible
 - e.g., “Game Time (seconds)” not “Game Time”
 - Help by using captions (or title, if stand-alone)
 - e.g., “Game time in seconds versus player skill in total hours played”

http://www.phplot.com/phplotdocs/conc-labels.html
Guidelines for Good Charts (3 of 7)

• Minimize ink

https://www.slideshare.net/NicoleMarinsek/darkhorse-line-chart
Guidelines for Good Charts (4 of 7)

• Use commonly accepted practices
 – Present what people expect
 – e.g., origin at (0,0)
 – e.g., independent (cause) on x-axis, dependent (effect) on y-axis
 – e.g., x-axis scale is linear
 – e.g., increase left to right, bottom to top
 – e.g., scale divisions equal, proportional

• Departures are permitted but require extra effort from reader → so use sparingly!
Guidelines for Good Charts (5 of 7)

• **Avoid ambiguity**
 – Show coordinate axes
 • at **right angles**
 – Show origin
 • usually at (0,0)
 – Identify individual curves and bars
 • With key/legend or label
 – Do not plot multiple variables on same chart
 • Single y-axis

![Chart Example](http://www.carltonassociatesinc.com/images/confusion-new.jpg)
Guidelines for Good Charts (6 of 7)

• Don’t connect categorical data with lines
 – Lines joining successive points signify that they can be approximately interpolated
 – If don’t have meaning, should not use line chart

- No linear relationship between champion types
- Instead, use column chart
- Don’t connect with lines
Guidelines for Good Charts (6 of 7)

• Can deceive as easily as can convey meaning

- Missing x-axis (1997 too far over)
- Missing y-axis hard to compare (1950 height > 1970)
- Data points unclear
Groupwork
Improving Bad Charts

2. Work as a Team: Compare lists. Discuss.

3. Write down combined.

https://web.cs.wpi.edu/~imgd2905/d22/groupwork/2-bad-charts/handout.html
Checklist for Good Charts

• Axes
 – Are both axes labeled?
 – Are the axis labels self-explanatory and concise?
 – Are the scale and divisions shown on both axes?
 – Are the min and max ranges appropriate?
 – Are the units indicated?

• Lines/Curves/Points
 – Is the number of lines/curves reasonably small?
 – Are curves labeled?
 – Are all symbols clearly distinguishable?
 – Is a concise, clear legend provided?
 – Does the legend obscure any data?

• Information
 – If the y-axis is variable, is an indication of spread (error bars) shown?
 – Are grid lines required to read data (if not, then remove)?

• Scale
 – Are units increasing left to right (x-axis) and bottom to top (y-axis)?
 – Do all charts use the same scale?
 – Are the scales contiguous?
 – Is bar chart order systematic?
 – Are bars appropriate width, spacing?

• Overall
 – Does the whole chart add information to reader?
 – Are there no curves/symbols/text that can be removed and still have the same information?
 – Does the chart have a title or caption (not both)?
 – Is the chart self-explanatory and concise?
 – Do the variables plotted give more information than alternatives?
 – Is chart referenced and discussed in any accompanying report?
Describing Chart in Report & Presentation

• “Formula”
 – Describe all axes
 • E.g., “The x-axis is time since game began, in seconds”
 – Describe data sets/trendlines
 • E.g., “The blue dots are the average maze completion time”
 – Then provide message
 • E.g., “Notice how the red bar is higher than the blue, indicating that …”
• Example on Web page

http://web.cs.wpi.edu/~imgd2905/d20/samples/analysis-example.html
Guidelines for Good Charts (Summary)

• For each chart, go over “checklist”
• The more “yes” answers, the better
 – Remember, while guidelines, art and not science
 – So, may consciously decide not to follow these guidelines if better without them → but have good reason!
• In practice, takes several trials before arriving at “best” chart
• Want to present message the most: accurately, simply, concisely, logically
• Accompany with description! Text or verbal
 – Remember, audience/reader has not seen! – Make sure to introduce