IMGD 2905

Inferential Statistics

Chapter 6 & 7

Overview

Use statistics to infer population parameters

Inferential statistics

Outline

Overview (done)

Foundation (next)

- Inferring Population Parameters
- Hypothesis Testing

Groupwork

Remember, probability distribution shows possible outcomes on x-axis and probability of each on y-axis.

- 1. Describe the probability distribution of 1 d6?
- 2. Describe the probability distribution of 2 d6?

https://web.cs.wpi.edu/~imgd2905/d23/groupwork/6-prob-dist/handout.html

https://academo.org/demos/dice-roll-statistics/

Dice Rolling (1 of 4)

- Have 1d6, sample (i.e., roll 1 die)
- What is probability distribution of values?

Dice Rolling (1 of 4)

- Have 1d6, sample (i.e., roll 1 die)
- What is probability distribution of values?

"Square" distribution

http://www.investopedia.com/articles/06/probabilitydistribution.asp

Dice Rolling (2 of 4)

- Have 1d6, sample twice and sum (i.e., roll 2 dice)
- What is probability distribution of values?

Dice Rolling (2 of 4)

- Have 1d6, sample twice and sum (i.e., roll 2 dice)
- What is probability distribution of values?

"Triangle" distribution

http://www.investopedia.com/articles/06/probabilitydistribution.asp

Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?

Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?

What's happening to the shape?

Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?

Dice Rolling (4 of 4)

 Same holds for general experiments with dice (i.e., observing sample sum and mean of dice rolls)

Resulting sum/mean follows a normal distribution

→ Even though base distribution is uniform!

http://www.muelaner.com/uncertainty-of-measurement/

Ok, neat – for "square" distributions (e.g., d6). But what about experiments with other distributions?

Sampling Distribution

 With "large enough" sample size, sum/mean looks "bellshaped" → Normal!

Sampling Distributions of x for n = 30

 With "large enough" sample size, sum/mean looks "bellshaped" → Normal!

Sampling Distributions of x for n = 30

http://flylib.com/books/2/528/1/html/2/images/figu115_1.jpg

- With "large enough" sample size, sum/mean looks "bellshaped" → Normal!
- How many is large enough?
 - 30 (15 if symmetric distribution)

Sampling Distributions of x for n = 30

- With "large enough" sample size, sum/mean looks "bellshaped" → Normal!
- How many is large enough?
 - 30 (15 if symmetric distribution)
- Central Limit Theorem
 - Sum/mean of independent variables tends towards Normal distribution

http://flylib.com/books/2/528/1/html/2/images/figu115 1.jpg

Why do we care about sample means following Normal distribution?

- What if we had only a sample mean and no measure of spread
 - e.g., mean score is 3
- What can we say about population mean?
 - Not a whole lot!
 - Yes, population mean could be 6. But could be 0. How likely are each?
 - → No idea!

Why do we care about sample means following Normal distribution?

Remember this?

With mean and standard deviation

Allows us to predict range to bound population mean (see next slide)

Why do we care about sample means following Normal distribution?

Outline

Overview (done)

Foundation (done)

Inferring Population Parameters (next)

Hypothesis Testing

Estimating Population Mean

- Underlying data follows uniform probability distribution (d6)
 - But assume population mean unknown

Q: How do we estimate the population mean?

(Example)

<u>Sample</u>	Sample Mean
1 d6	4.0
2 d6 (4 + 2) / 2	2 = 3.0
3 d6 (1 + 6 + 2)/3= 2.3
4 d6 (4 + 4 + 2	+ 3) / 4 = 3.3

Estimating Population Mean

Q: What happens as sample size increases?

Q: How big a sample

do we need?

Estimating Population Mean

Q: What happens as sample size increases?

Q: How big a sample do we need?

Depends upon how much varies

Values that are not the mean contribute to "error" -> sampling error

https://demonstrations.wolfram.com/LawOfLargeNumbersDiceRollingExample/

Sampling Error

 Error from estimating population parameters from sample statistics is sampling error

low variance

- Exact error often cannot be known (do not know population parameters)
- But size of error based on:
 - Variation in population (σ) itself more variation, more sample statistic variation (s)
 - Sample size (N) larger sample, lower error
 - Q: Why can't we just make sample size super large?
- How much does it vary? → Standard error

Standard Error

- Amount sample means will vary from experiment to experiment of same size
 - Standard deviation of the sample means
- Also, likelihood that sample statistic is near population parameter
 - What does the size of the standard error depend upon? (Hint: see formula above)

```
standard error SE = \frac{S}{\sqrt{n}} sample size n = 5 S = 17 = \frac{17}{\sqrt{5}} SE = 7.6
```

So what? Reason about population mean e.g., 95% confident that sample mean is within ~ 2 SE's (where does this come from?)

Standard Error

- Amount sample means will vary from experiment to experiment of same size
 - Standard deviation of the sample means
- Also, likelihood that sample statistic is near population parameter
 - Depends upon sample size (N)
 - Depends upon standard deviation (s)

(Example next)

```
standard error SE = \frac{S}{\sqrt{n}} sample size n = 5 S = 17 = \frac{17}{\sqrt{5}} SE = 7.6
```

So what? Reason about population mean e.g., 95% confident that sample mean is within ~ 2 SE's

(where does this come from?)

Standard Error (2 of 2)

If N = 20: What will happen to x's? What will happen to dots? If N=20:

What will happen to means?
What will happen to bars?
How many will cross the blue line?

Groupwork

- 1. How many of the bars intersect the blue?
- 2. What do graphs look like N = 20?
- 3. Now, how many bars intersect?
- Standard Error

https://web.cs.wpi.edu/~imgd2905/d23/groupwork/7-std-error/handout.html

Standard Error (2 of 2)

If N = 20: What will happen to x's? What will happen to dots? If N=20:

What will happen to means?
What will happen to bars?
How many will cross the blue line?

Standard Error (2 of 2)

Estimate population parameter → confidence interval

Confidence Interval

- Range of values with specific certainty that population parameter is within
 - e.g., 90% confidence interval for mean *League of Legends* match duration: [28.5 minutes, 32.5 minutes]

Confidence Interval for Mean

- Probability of μ in interval $[c_1, c_2]$
 - $P(c_1 \le \mu \le c_2) = 1-\alpha$ [c1, c2] is confidence interval α is significance level $100(1-\alpha)$ is confidence level
- Typically want α small so confidence level 90%, 95% or 99% (more on effect later)

So, do we have to do *k* experiments, each of size *n*?!

- Say, $\alpha = 0.1$. Could do k experiments (size n), find sample means, sort
 - Graph distribution
- Interval from distribution:

Lower bound: 5%

Upper bound: 95%

 \rightarrow 90% confidence interval

http://www.comfsm.fm/~dleeling/statistics/notes009_normalcurve90.png

Confidence Interval Estimate

- Estimate interval from 1 experiment, size n
- Compute sample mean (\bar{x}) , sample standard error (SE)
- Multiply SE by t distribution
- Add/subtract from sample mean
- → Confidence interval
- Ok, what is t distribution?
 - Function, parameterized by α and n

$$\boxed{\overline{X} \pm t \frac{s}{\sqrt{n}}}$$

$$\boxed{\overline{x} - t \cdot \frac{s}{\sqrt{n}}, \overline{x} + t \cdot \frac{s}{\sqrt{n}}}$$

t distribution

- Looks like standard normal, but bit "squashed"
- Gets more less squashed as n gets larger
- Note, can use standard normal (z distribution) when large enough sample size (n = 30+)

aka student's t distribution ("student" was anonymous name used when published by William Gosset)

Computing a Confidence Interval – Example

(Unsorted)		
Game Time		
4.4	3.9	
3.8	3.2	
2.8	4.1	
4.2	3.3	
2.8	2.8	
2.9	4.2	
1.9	3.1	
5.9	4.5	
3.9	4.5	
3.2	4.8	
4.1	4.9	
5.3	5.1	
3.6	3.7	
5.1	3.4	
2.7	5.6	
3.9	3.1	

- Suppose gathered game times in a user study (e.g., for your MQP)
- Can compute sample mean, yes
- But really want to know where population mean is
- → Bound with confidence interval

Computing a Confidence Interval – Example

(Sorted)
Game Time

•
$$\bar{x}$$
 = 3.90, stddev *s*=0.95, *n*=32

• A 90% confidence interval (α is 0.1) for population mean (μ):

$$3.90 \pm \frac{1.696 \times 0.95}{\sqrt{32}}$$
$$= [3.62, 4.19]$$

- With 90% confidence, μ in that interval. Chance of error 10%.
- But, what does that mean?

(See next slide for depiction of meaning)

Meaning of Confidence Interval (α)

How does Confidence Interval Size Change?

- With sample size (N)
- With confidence level $(1-\alpha)$

Look at each separately next

How does Confidence Interval Change (1 of 2)?

- What happens to confidence interval when sample size (N) increases?
 - Hint: think aboutStandard Error

How does Confidence Interval Change (1 of 2)?

- What happens to confidence interval when sample size (N) increases?
 - Hint: think aboutStandard Error

$$SE_{\bar{x}} = \frac{S}{\sqrt{n}}$$

$$\overline{X} \pm t \frac{s}{\sqrt{n}}$$

How does Confidence Interval Change (2 of 2)?

- What happens to confidence interval when confidence level (1-α) increases?
- 90% CI = [6.5, 9.4]
 - 90% chance population value is between 6.5, 9.4
- 95% CI =
 - 95% chance population value is between

How does Confidence Interval Change (2 of 2)?

- What happens to confidence interval when confidence level (1-α) increases?
- 90% CI = [6.5, 9.4]
 - 90% chance population value is between 6.5, 9.4
- 95% CI = [6.1, 9.8]
 - 95% chance population value is between 6.1, 9.8
- Why is interval wider when we are "more" confident? See distribution on the right

http://vassarstats.net/textbook/f1002.gif

Groupwork – Interpreting a Confidence Interval

https://web.cs.wpi.edu/~imgd2905/d23/groupwork/9-conf-interp/handout.html

Using Confidence Interval (1 of 3)

- For charts, depict with error bars
- CI different than standard deviation
 - Standard deviation show spread
 - CI bounds population parameter (decreases with N)
- → CI indicates range of *population* parameter

Make sure sample size N=30+ (N=15+ if somewhat normal. Any N if know distro is normal)

Using Confidence Interval (2 of 3)

Compare two alternatives, quick check for statistical significance

- No overlap? \rightarrow 90% confident difference (at α = 0.10 level)
- Large overlap (50%+)? \rightarrow No statistically significant diff (at α = 0.10 level)
- Some overlap? → more tests required

Using Confidence Interval (3 of 3) [Some Overlap]

But if compute difference, and then confidence interval does not cross 0! (Caused by error propagation)

How *Not* to Use Confidence Intervals (1 of 2)

"The confidence intervals of the two groups <u>overlap</u>, hence the difference is <u>not statistically significant</u>" — A lot of People

 Overlap – careful not to say no statistically significant difference (see previous slide)

How *Not* to Use Confidence Intervals (2 of 2)

"The 95% confidence interval goes from C1 to C2, so 95% of all observations are between C1 and C2. — A lot of People

 Do not quantify variability (e.g., 95% of values in interval)

Statistical Significance versus Practical Significance

Warning: may find statistically significant difference.

That doesn't mean it is important.

It's a Honey of an O

- Boxes of Cheerios, Tastee-O's both target 12 oz.
- Measure weight of 18,000 boxes (large N!)
- Using statistics:
 - Cheerio's heavier by 0.002 oz.
 - And statistically significant $(\alpha=0.99)!$
- But ... 0.0002 is only 2-3 O's. Customer doesn't care!

Latency can Kill?

- Lag in League of Legends
- Pay \$\$ to upgrade Internet from 100 Mb/s to 1000 Mb/s
- Measure ping to LoL server for 20,000 samples (large N!)
- Using statistics
 - Ping times improve 0.8 ms
 - And statistically significant $(\alpha=0.99)!$
- But ... below perception!

Effect Size

- Quantitative measure of <u>strength of finding</u>
 - Measures practical significance
- Emphasizes size of difference of relationship

(Cohen's d)

Relative size	Effect size	% of control group below the mean of experimental group
	0.0	50%
Small	0.2	58%
Medium	0.5	69%
Large	0.8	79%
	1.4	92%

https://www.simplypsychology.org/cohen-d.jpg

Similar to Z-score
$$z = \frac{X - \overline{X}}{S}$$

What Confidence Level to Use (1 of 2)?

- Often see 90% or 95% (or even 99%) used
- Choice based on loss if wrong (population parameter is outside), gain if right (parameter inside)
 - If loss is high compared to gain, use higher confidence
 - If loss is low compared to gain, use lower confidence
 - If loss is negligible, lower is fine
- Example (loss high compared to gain):
 - Hairspray, makes hair straight, but has chemicals
 - Want to be 99.9% confident it doesn't cause cancer
- Example (loss low compared to gain):
 - Hairspray, makes hair straight, mainly water
 - Ok to be 75% confident it straightens hair

What Confidence Level to Use (2 of 2)?

- Often see 90% or 95% (or even 99%) used
- Choice based on loss if wrong (population parameter is outside), gain if right (parameter inside)
 - If loss is high compared to gain, use higher confidence
 - If loss is low compared to gain, use lower confidence
 - If loss is negligible, lower is fine
- Example (loss negligible compared to gain):
 - Lottery ticket costs \$1, pays \$5 million
 - Chance of winning is 10⁻⁷ (50% payout, so 1 in 10 million)
 - To win with 90% confidence, need 9 million tickets
 - No one would buy that many tickets (\$9 mil to win \$5 mil)!
 - So, most people happy with 0.0001% confidence

Outline

Overview (done)

Foundation (done)

Inferring Population Parameters (done)

Hypothesis Testing (next)

Hypothesis Testing

- Term arises from science
 - State tentative explanation→ hypothesis
 - Devise experiments to gather data
 - Data supports or rejects hypothesis
- Statisticians have adopted to test using inferential statistics
- → Hypothesis testing

Just brief overview here → Conversant
Chapters 8 & 9 in book have more

Hypothesis Testing Terminology

- Null Hypothesis (H₀) hypothesis that no significance difference between measured value and population parameter (any observed difference due to error)
 - e.g., population mean time for Riot to bring up NA servers is 4 hours
- Alternative Hypothesis hypothesis contrary to null hypothesis
 - e.g., population mean time for Riot to bring up NA servers is not 4 hours
- Care about Alternate, but test Null
 - If data supports, Alternate may not be true
 - If data rejects, Alternate may be true
- Why Null and Alternate?
 - Remember, data doesn't "prove" hypothesis
 - Can only reject it at certain significance (e.g., there is probably a difference)
 - So, reject Null

- P value smallest level that can reject H₀
 - "If p value is low, then H₀ must go"
- How "low" based on "risk" of being wrong (like confidence interval)

http://www.buzzle.com/img/articleImages/605910-49223-57.jpg

Example – Peppermint Essential Oil

Essential oils - peppermint oil helps anxiety?

- 1. Null hypothesis Peppermint oil no effect on anxiety
- 2. Alternative hypothesis Peppermint essential oil alleviates anxiety
- 3. Significance level significance 0.25 (75%)
- **4. Experiment** One group with peppermint oil and another with placebo, compute difference in self-reported anxiety
- **5. P-value** p-value is 0.05
- **6. Conclusion** difference is statistically significant (below 0.25). Reject Null, so support for alternative hypothesis that peppermint oil can alleviate anxiety

Example – Vitamin C and Colds

Vitamin C prevents common cold?

- 1. Null hypothesis Take vitamin C no less likely to become ill
- 2. Alternative hypothesis Take vitamin C less likely to become ill
- 3. Significance level significance 0.05 (95%)
- **4. Experiment -** one group vitamin C, other placebo, and record whether or not participants got cold
- **5. P-value** p-value is 0.20
- **6. Conclusion** difference is not significant (0.20 ≰ 0.5). Fail to reject Null hypothesis. No support for alternative hypothesis that vitamin C can prevent colds

Hypothesis Testing Steps

- 1. State hypothesis (H) and null hypothesis (H₀)
- 2. Evaluate risks of being wrong (based on loss and gain), choosing significance (α) and sample size (N)
- 3. Collect data (sample), compute statistics
- 4. Calculate p value based on test statistic and compare to α
- 5. Make inference
 - Reject H_0 if p value less than α
 - So, H may be right
 - Do not reject H_0 if p value greater than α
 - So, H may not be right

Hypothesis Testing Steps (Example)

- State hypothesis (H) and null hypothesis (H₀)
 - H: Mario level takes more than 5 minutes to complete
 - H_0 : Mario level takes 5 minutes to complete (H_0 always has =)
- Evaluate risks of being wrong (based on loss and gain), choosing significance (α) and sample size (N)
 - Player may get frustrated, quit game, so $\alpha = 0.1$
 - Without distribution analysis, 30 (Central Limit Theorem)
- Collect data (sample), compute statistics
 - 30 people play level, compute average minutes, compare to 5
 - E.g., mean of 6.1 minutes
- Calculate p value based on test statistic and compare to α
 - P value = 0.02, α = 0.1
 - "How likely is it that the true mean is 5 when measure 6.1?"
- Make inference
 - Here: p value less than $\alpha \rightarrow REJECT H_0$, so H may be right
 - Note, would not have rejected H_0 if p value greater than α

Depiction of P Value

Probability density of each outcome, computed under Null hypothesis p value is area under curve past observed data point (e.g., sample mean)

E.g., Mario mean of 5, so is 6.1. in the "unlikely" region?

A p-value (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Groupwork

- 1. In Hypothesis testing, the Null Hypothesis
- 2. Game development team wants new model assessed. Steps?

https://web.cs.wpi.edu/~imgd2905/d23/groupwork/ 10-hypo-testing/handout.html

Groupwork

- 1. In Hypothesis testing, the Null Hypothesis (H0) is:
 - a. confinterval of sample mean crosses zero/Null
 - b. sample mean is within a standard error of the population mean
 - no significance difference between measured and population
 - d. all of the above
 - e. none of the above

Groupwork

- 2. Your game development team wants to see if the new Hero model they created is played more often than the old Hero (10%). They task you with doing this assessment. What steps do you take?
 - a. Create H and H0, pick α , decide N
 - b. Gather data
 - c. Compute sample mean
 - d. Test (compute p value)
 - e. Analyze results to accept or reject