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Motivation

Have data (sample, x’s)

Want to know likely value
of next observation (Y)
— E.g., playtime versus
skins owned
A —reasonable to
compute mean y-value
(with confidence interval)

B — could do same, but
there appears to be
relationship between X
and Y!

WV




Motivation

 Have data (sample, x’s)

 Want to know likely value N

of next observation (Y)

— E.g., playtime versus
skins owned

* A-reasonable to A

compute mean y-value Y
(with confidence interval)

* B - could do same, but
there appears to be - ,
relationship between X /

and Y! RS
— Predict B (here, use X data

WV

to predict Y)
e.g., “trendline” (regression)



Overview

Broadly, two types of prediction techniques:

1. Regression — mathematical equation to model,
use model for predictions
— We’ll discuss simple linear regression

2. Machine learning — branch of Al, use computer

algorithms to determine relationships
(predictions)

— (S 4342 Machine Learning

NOT DOG

nput Feature Extraction Classification Output



Types of Regression Models

1 Explanatory

Regression | 24 Explanatory

Variable Mo?els Variables
v v
Simple Multiple
l [
R v N
hion- Linear S
Linear Linear

* Explanatory variable explains dependent variable
— Variable X (e.g., skill level) explains Y (e.g., KDA)
— Can have 1 (simple) or 2+ (multiple)

e Linear if coefficients added, else Non-linear



Outline

Introduction

Simple Linear Regression
— Linear relationship

— Residual analysis

— Fitting parameters

Measures of Variation
Misc

(done)
(next)



Simple Linear Regression

 Goal—find a linear (line) relationship between two values
— E.g., KDA and skill, time and car speed

* First, make sure relationship is linear! How?



Simple Linear Regression

 Goal—find a linear (line) relationship between two values
— E.g., KDA and skill, time and car speed

* First, make sure relationship is linear! How?
— Scatterplot

(c) no clear relationship
(b) not a linear relationship
(a) linear relationship — proceed with linear regression

(a) Linear (b) Nonlinear (c) No relationship



Linear Relationship

* From algebra: line in form Y=mX+Dh
— m is slope, b is y-intercept

e Slope (m) is amount Y increases when X increases
by 1 unit

* Intercept (b) is where line crosses y-axis, or where
y-value when x =0

Change in X

\

] b = Y-intercept




Simple Linear Regression Example

A B i
1 |Home Market Yalue
. 7
* Size of house related | i Howesse  sousre Foot Market vaiue
. 3 32 1914 $104.400.00
to Ifts ma rket Value. : 32 1,642 $93.300.00
7 33 1812 $41.000.00
5 3z 1836 $101.900.00
X = square footage g s
Y = market value (S)
Market Value
e Scatter plot (42 s I
h $110,000.00 > ¢ L
OmeS) %100,000.00 & L hd
Sgul.uuu..uu P : g‘ ﬂ’
— indicates linear $80,000.00 ’, *
570,000.00

Square Feet

tl"end A %60,000.00 . . . . . .
n 1,400 1,600 1,800 2,000 2,200 2,400 2,600




Simple Linear Regression Example

* Two possible lines shown below (A and B)
 Want to determine best regression line
* Line A looks a better fit to data

Y=mX+
— But how to know? :
Market Value
$130,000.00
$120,000.00 & . A
$110,000.00 > ——
$100,000.00 —4# _T":-'_Fr —
$ B
$90,000.00 - 3 e
$80,000.00 *
$70,000.00
$60,000.00

A 1,400 1,600 1,800 2,000 2,200 2,400 2,600
Square Feet



Simple Linear Regression Example

* Two possible lines shown below (A and B) P
 Want to determine best regression line

 Line A looks a better fit to data
— But how to know?

Y=mX+Db

Market Value

Line that gives best fit to $130,000.00 "
. . . . $120,000.00 L Y
data is one that minimizes $110,00000 . o_—
prediction error Szzzzzzzﬂn ™* s “"F — 5
: e *

—> Least squares line $80,000.00 .

(more later) 7000000

$60,000.00

1,400 1,600 1,800 2,000 2,200 2,400 2,600

Square Feet



Chart

e Scatterplot
* Right click 2 Add Trendline

Simple Linear Regression Example

a0

40
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10

O O
Umbrellas sold +
.i‘
e ¥ T
% .. P
&
. Series "Umbrel - O
Fill  Cutline
ggsa %
% Delete

s Reset to Match Style

Il Change Series Chart Type..

&0 &0 180

Select Data...

Add Data Labels »

Add Trendline...

14 Format Data Series...

Format Trendline v

Trendline Options ¥
CIRON |

4 Trendline Options

\_ Exponential
L ® Linear
\_ Lagarithmic
\_ Polynomial  Order 2
L Power

\_ Erae‘.;;ngge Period | 2

Trendline Mame

& Automatic Linear (Umbrellas

zold)
Custom
Forecast
Forward 0.0 period
Bacloward 0.0 period

Set Intercept

+| Display Equation on chart

Display R-squared value on chart




Simple Linear Regression Example

[ Formulas
=SLOPE(C4:C45,B4:B45) T IFlome Market Value :
&
- Slope = 35.036 . I R i B T T
5 ad 1.914 $104.400.00
k ad 1.842 $93.300.00
=INTERCEPT(C4:C45,B4:B45) - 33 1,812 $91,000.00
B ad 1.83k $101.900.00
4 a3 2. 128 $108.500.00
- Intercept = 32,673 10 32 1732 $87.600.00

Estimate Y when X = 1800 square feet
Y =32,673 + 35.036 x (1800) = $95,737.80

()



Simple Linear Regression Example

Market value = 32673 + 35.036 x (square feet)
Predicts market value better than just average

Market Value

$130,000.00

$120,000.00

$110,000.00

*,,,-"""‘

-

¥
*

$100,000.00

*
$ %

y=35.036x+ 32673

$90,000.00 +—5 *”

$80,000.00

$70,000.00

$60,000.00

1,400

T
1,600

T
1,800

T T T 1
2,000 2,200 2,400 2,600

Square Feet

But before use, examine residuals

()



D

Groupwork o’ ‘e -0
p &P

Simple Linear Regression

https://web.cs.wpi.edu/~imgd2905/d22/groupwork/11-
regression/handout.html



https://web.cs.wpi.edu/~imgd2905/d22/groupwork/11-regression/handout.html

Groupwork

1. In simple linear regression, the y-intercept (b)
represents the:

a. predicted value of Y Q

change in Y per unit change in X o ‘e e

b.
c. predicted value of Y when X=0 q t ?
d.

variation around the line "

2. Asimple linear regression model for predicting a
player's points (Y) is 6 X + 10, where X is the
player's level.

— How many more points can a player expect to get when
they level up?

— How many points can a level 10 player expect to get?




Outline

Introduction

Simple Linear Regression
— Linear relationship

— Residual analysis

— Fitting parameters

Measures of Variation
Misc

(done)
(next)

(done)



Residual Analysis

* Before predicting, confirm that linear regression
assumptions hold

— Variation around line is normally distributed

&

— Variation equal for all X

— Variation independent for all X
 How? Compute residuals (error in prediction) = Chart

Predicted 'y’

Regression
Line

200 4

40 60 80 100
Weight (kg)



Actual values for Revenue

Residual Analysis

https://www.qualtrics.com/support/stats-ig/analyses/regression-guides/interpreting-residual-plots-improve-regression/

Predicted vs Actual Residuals
55+ ® L+ ]
e ]
o o
5 .
- 2_
5@ . 5 © .
@
o0 4
L [ ]
45 - . g ] . . ] = o
® an = 5] L ®
p, ¢ L] ¢ m 1 ﬂc. - L
‘@ 3 ® o? Lo o
40 ® o o o ® o @ 9@
® . OC)- ® E ® =] o % . .
“ , o ne o [=] o« @ gn U?J':J
35 OO. e @ L e o Fee- F. -9 TR LT
o L & * o ® e e &
o 2%% ° o - J ® >
& "'E ﬂ':!‘
30 - e ¢ o T lniliad ) [ ® eg . .
p 0 OO -E -1 @ @ @ L
o ®’ @ W . . o
‘¢ ®
25 - ®° o e o
. Oy o
(o]
. N . .
24 .7 2
L]
15_ T T 1 T T T T T T T T J T T
20 25 30 35 40 45 50 29 25 £l 35 4@ 45 5@

Predicted values for Revenue Predicted values for Revenue

Note that we've colored in a few dots in orange so you can get the sense of how this transformation works.

Variation around line normally distributed ?
Variation equal for all X
Variation independent for all X?




Symmetrically distributed

No clear pattern

Residual Analysis — Good

https://www.qualtrics.com/support/stats-iq/analyses/regression-guides/interpreting-residual-plots-improve-regression/

o

Standardized Residual
Standardized Residual

T T T T T T T T T T
80 90 100 110 120 130 140 150 160 170

Predicted Predicted

2.8 2.9 1.0 1.1 1.2 1.3 1.4

Standardized Residual
(13
Standardized Residual

58 60 62 64 66 68 70 72 74

Predicted Predicted

YO ‘B|ppIW Spiemol pataisn|d




Clear shape

QOutliers

Standardized Residual

Standardized Residual

Residual Analysis — Bad

https://www.qualtrics.com/support/stats-ig/analyses/regression-guides/interpreting-residual-plots-improve-regression/
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Residual Analysis — Summary

* Regression
assumptions:

— Normality of variation

0 il il S
v T ©

around regression

— Equal variation for all y
values

— Independence of
variation

(a) good

(b) funnel
(c) double bow
(d) nonlinear



Outline

Introduction

Simple Linear Regression
— Linear relationship

— Residual analysis

— Fitting parameters

Measures of Variation
Misc

(done)
(done)
(next)

(done)



Linear Regression Model

\8- = random error ‘

J© : ®
‘\\ ® "~ Y =b+mx
Observed value

Random error associated with each observation
(Residual)




Fitting the Best Line

* Plot all (X, Y;) Pairs




Fitting the Best Line

* Plot all (X, Y;) Pairs
* Draw a line. But how do we know it is best?




Fitting the Best Line

* Plot all (X, Y;) Pairs
* Draw a line. But how do we know it is best?

Slope
changed

Intercept
unchanged




Fitting the Best Line

* Plot all (X, Y;) Pairs
* Draw a line. But how do we know it is best?

Slope
— unchanged

Intercept
changed




Fitting the Best Line

* Plot all (X, Y;) Pairs
* Draw a line. But how do we know it is best?

Slope
changed

Intercept
changed




Linear Regression Model

* Relationship between variables is linear

function
Population Population Random
Y-Intercept Slope Prediction

Dependent
(response)
Variable
(e.g., kills)

/

\ / /Error

Yi :bo -I-mX,-I—S,

\

Want error
as small as
possible

Independent (explanatory)

Variable
(e.g., skill level)




Least Squares Line

 Want to minimize difference between actual y
and predicted y
— Add up ¢ for all observed y’s
— But positive differences offset negative ones
— (remember when this happened for variance?)
— Square the errors! Then, minimize (using Calculus)

Salary ($)

Simple Linear Regression:

Bt

|~

%+

L=

2

>

-

Experience

+ v

i

- Minimize:

E[H - hﬂ - ']I?]Xf-}: E

u i=1
: Take derivative
: Setto 0 and solve :

SUM (y - y )? => min



Least Squares (LS) Line Graphically

N
LS minimizes Y & = &; + &5 + &5 + &
=1




® ® O O

Least Squares Line Graphically —
Interactive Demo

Create new situations moving the green
data points about the graph.

Line of Best Fit: Click the circle at the left 1 139
to Show/Hide. Drag RED dots to
position the line.

Residuals: Click the circle at the left to

Show/Hide.
20

Squares: Click the circle at the left to
Show/Hide.

Least Squares Regression Line: Click

the circle at the left to Show/Hide. ' /

https://www.desmos.com/calculator/zvrcdlg3cr



https://www.desmos.com/calculator/zvrc4lg3cr

Outline

Introduction
Simple Linear Regression
Measures of Variation

— Coefficient of Determination
— Correlation

Misc

(done)
(done)
(next)



Measures of Variation

Observed Data Point

.?::Unexplained Variation (random)
Total
}Variatiun
@ Explained Variation (from model)
Regression Line
X
* Several sources of variation iny S E

i Break this

— Error in prediction (unexplained)
— Variation from model (explained)



Sum of Squares of Error (SSE)

Dependent variable (y)

Independent variable (x)

Least squares regression selects line with lowest total sum
of squared prediction errors

Sum of Squares of Error, or SSE

Measure of unexplained variation



Sum of Squares Regression (SSR)

V 4 Il' Population mean:y

Independent variable (x)

Dependent variable (y)

* Differences between prediction and population mean
— Gets at variation dueto X & Y

* Sum of Squares Regression, or SSR
 Measure of explained variation



Sum of Squares Total
e Total Sum of Squares, or SST = SSR + SSE

AN i i
Y| SST=)i-7? SsE= Y - T
=1 i=1

g () ey

- SS

Y

SST +
SSR

=~

[
SSR = SST — SSE = Z(ﬁ- _7)?

=1

>
X



Coefficient of Determination

* Proportion of total variation (SST) explained
by the regression (SSR) is known as the
Coefficient of Determination (R?)

SSR SSE

=557 = LT SsT

R2

* Ranges from 0 to 1 (often said as a percent)

1 — regression explains all of variation
0 — regression explains none of variation



Coefficient of Determination —

Visual Representation

A}"

Smaller is better

Variation in
observed data
model cannot
explain (error)

Total variation in
observed data

. Larger is better

X
»

ttttt ://upload.wikimedia.org/wikipedia/commons/thumb/8/86/Coefficient_of_Determination.svg/400px-Coefficient_of_Determination.svg.png




Coefficient of Determination Example

.+ r-squared = 0.81

* How “good” is regression model? Roughly:
0.8<=R?<=1 strong



Coefficient of Determination Example

.+ r-squared = 0.81 " r-squared = 0.24

Temperatyre  Temperature

* How “good” is regression model? Roughly:
0.8<=R?<=1 strong

0 <=R%?< 0.5 weak



How “good” is the Regression Model?

R%0.06 REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
0 GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NEL) CONSTELLATIONS ON IT.

https://xkcd.com/1725/



Relationships Between X & Y

trong relationships Weak relationships




Relationship Strength and Direction —

Correlation
» Correlation measures strength | parcons Correlation

and direction of linear ; . Vary
relationship __zwwmen X T
-1 perfect neg. to +1 perfect pos. [EE-B2 -7 Tep\i;ytew
— Sign is same as regression slope | \\..e %.mean of X variable |
— Denoted R. Why? Square R=R? 7-mean of Y variable |

A A 4 4

//;/ . -
,/’XA ™
— I — —>

POSITIVE CORRELATIOON ZERO CORRELATION NEGATIVE CORRELATION

ttttt ://www.mbaskool.com/2013_images/stories/dec_images/pearson-coeff-bcon.jpg



Correlation Examples

y y y
o o
O O ®
o0 ° —05 0
‘\.\"\"\-\ o0 o o0 ®
o
X X
r=-1 r=-.6 r=0
y o %00 v
®e
® O
° o,
0% o ®




Groupwork

* |ntroduction "

— lcebreaker: What game are you looking forward to
playing this summer?

* Groupwork
— Think, discuss, write down — qualtrics

 Correlation
https://web.cs.wpi.edu/~im

5d2905/d22/sroupwork/12-
— Estimate correlation correlation/handout.html

— Consider scatterplots



https://web.cs.wpi.edu/~imgd2905/d22/groupwork/12-correlation/handout.html

Correlation Examples

-
-
-
-
e
-
-
-
-
-
)
~
e
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Correlation_examples2.svg/1200px-Correlation_examples2.svg.png



J
J

?7?

Correlation Examples

?7? ?7? ?7?

s

.
- BT
__,,..--"""—.—.-

- e crm————

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Correlation_examples2.svg/1200px-Correlation_examples2.svg.png

-~J
-~J

-J
-J




Correlation Examples

s

-.',...--""-' e e — e T—

L

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Correlation_examples2.svg/1200px-Correlation_examples2.svg.png




Correlation Examples

e AN

https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/Correlation_examples2.svg/1200px-Correlation_examples2.svg.png



Correlation Examples

(Note, would
want to use
—_— U residual analysis
Xa X4 before using
predictions!)




Correlation Examples

(Note, would
want to use
residual analysis
before using
predictions!)

Anscombe’s
Quartet
2 Summary stats:
R=0.83

o Mean, 9

Mean 7.5
S 8- 8 y

Var, 11

® 0 Var, 4.125

4 Model: y=0.5x+3

4I1- é é 1I0 1I2 1I4 1|6 1I8 4|» E; é 110 1; 1|4 1|6 1I8

. . R2 = 0.69


https://en.wikipedia.org/wiki/Anscombe%27s_quartet

No
Correlation

Correlation Summary

Perfect High Low
Positive Positive Positive
Correlation Correlation Correlation

\
o (o]
(o] e (o]
o® & % lo o ° o
0© H oo o @ i 2 o °
" : o i o O =
Low High Perfect
Negative Negative Negative
Correlation Correlation Correlation
[e] o [+)
09 o cbo
O0 o oo [+] e i ° 5
o o °
o (o] i Oo o oo
o . ¢ o 3

|W3Y UOI3e|24400/B1EP/WOD UNYSISYIRW MMM //:Sd1Y



Correlation is not Causation

https://cdn-images-1.medium.com/max/1600/1*]LYI15eCVEN7ZUWXBIrrapw.png

Ice Cream
Sales
=
&
—
e

50
100 120 140 160 180 200 220 240 260

Sunglasses Sold

Buying sunglasses causes people to buy ice cream?



Correlation is not Causation

-l
D

N
o
(0 o]

ey
by
(o))

15.2

Total US Highway Fatality Rate
5 o
W B

14.8

1996 R2= 097

1998 ®

Sources:
U.S. NHTSA, DOT HS 810 780

U.S. Department of Agriculture 2000

200 250 300 350 400 450 500 550

Fresh Lemons Imported to USA from Mexico
(Metric Tons)

Importing lemons causes fewer highway fatalities?



Correlation is not Causation

https://science.sciencemag.org/content/sci/348/6238/980.2/F1.large.jpg?width=800& height=600&carousel=1

$437M | Aggregate comic 1787
book sales
Computer science
doctorates awarded
$311M - : 867
2003 2010
20,000 | Injuries related to 25.6M
falling televisions
Undergrad
enrollment at
15900 U.S. unlyer5|t|es S
2006 2010
Tornadoes Shark attacks
1,819 3
941 0
2002 2010



Correlation is not Causation

T USED 10 THINK THEN I TOOK A | [ SOUNDS LKE THE
CORRELATION mpuco STATISTICS CLASS. cmss HELPED.
CAUSATION. NOwW I DON'T. WELL, MAYBE‘

08785 d

https://xkcd.com/552/




Outline

Introduction

Simple Linear Regression
Measures of Variation
Misc

(done)
(done)

(done)
(next)



Extrapolation versus Interpolation

 Prediction A

— Interpolation —
within measured

X-range

— Extrapolation — /’“*“"””’”- .
outside measured  Intarpolated, C
X_range Measured, A

Extrapolated, D o




Be Careful When Extrapolating

https://i.stack.imgur.com/3Ab7e.jpg

Prediction

|
|
|
|
|
|
|
|
> |
Q |
N
C [
O |
o |
n |
()] I
o |
i True regression
: function
i r(x)=E[Y|X=x]
New input X |
.
Predictor X



Prediction and Confidence Intervals
(1 of 2)

Pradiction intarval for individual y, given x, S o

-

o ; ®

¥~ Confidence Interval for the
mean of y, gven x;

—
-__-_..-
-




Prediction and Confidence Intervals
(2 of 2)

95% Confidence Bands 95% Prediction Bands
160= 160=
140=
120~
o

100+
BoH

ﬁ'ﬂ 1 || 1 | 1

0 5 10 15 20 25

X X



Beyond Simple Linear Regression

I T T T 1 I T T T 1 I T T T 1 I T T T 1
a 5 10 15 20 a 5 10 15 20 a 5 10 15 20 a 5 10 15 20

Linear Quadratic Root Cubic

* Multiple regression — more parameters beyond just X
— Book Chapter 11
* More complex models — beyond just |Y=mX+b




More Complex Models

Simple Complex
@
®
.
o ° ®
@
y=12x+9 y =18x*+ 13x3-9x% + 3x + 20

* Higher order polynomial model has less error
- A “perfect” fit (no error)
* How does a polynomial do this?



Graphs of Polynomial Functions

https://cdn-imag om/max/2400/1*pjlp920-MZdS_3fLVhf-Dw.jpeg
>

-1 _ - \|]
- \V,

Constant Function Linear‘i:unction Quadratic"Function
(degree =0) (degree = 1) (degree = 2)
\\/\\ \ N/ /A\//\\/
Cubic Function Quartic Function Quintic Function
(deg. = 3) (deg. = 4) (deg. =5)

Ill

Higher degree, more potential “wiggles”

But should you use?




Price

Underfit and Overfit

https://i.stack.imgur.com/t0zit.png

: g
& &
X
Size Size .
(}“ 4 ()l T -+ 92 1'2 ()() " = ()1 e ()) 1'2 T 9; l"‘ s 0].1"‘
Just Right | Overflt |

e Overfit analysis matches data too closely with more parameters than can
be justified

* Underfit analysis does not adequately match data since parameters are
missing

- Both models fit well, but do not predict well (i.e., for non-observed values)

* Just right — fit data well “enough” with as few parameters as possible
(parsimonious - desired level of prediction with as few terms as possible)



Summary

Can use regression to predict un-
measured values

Before fit

— Visual relationship (scatter plot) and residual
analysis

Strength of fit — R? and correlation (R)
Beware

— Correlation is not causation

— Extrapolation

Higher order, more complex models can fit
better

— Beware of overfit 2 less predictive power



