Descriptive Statistics

Chapter 3
Summarizing Data

• With lots of playtesting, there is a lot of data
 – This is a good thing!
• But raw data is often just a pile of numbers
 – Rarely of interest
 – Or even sensible
• Q: How to summarize all this information?
Summarizing Data

• With lots of playtesting, there is a lot of data
 – This is a good thing!
• But raw data is often just a pile of numbers
 – Rarely of interest
 – Or even sensible
• Q: How to summarize all this information?

Measures of central tendency

Examples? Pros and Cons?
Breakout 2

4 3 7 8 3 4 22 3 5 3 2 3

• Different for *central tendency* with one number?
• What are *pros* and *cons* of each?
• Icebreaker, Groupwork, Questions

https://web.cs.wpi.edu/~imgd2905/d20/breakout/breakout-2.html
Measure of Central Tendency: **Mean**

- Also called the "**arithmetic mean**" or "**average**"
- In Excel, `=AVERAGE(range)`
 - `=AVERAGEIF()` – averages if numbers meet certain condition
Measure of Central Tendency: Median

- Sort values low to high and take middle value

In Excel, =MEDIAN(range)
Measure of Central Tendency: Mode

- Number which occurs most frequently
- Not too useful in many cases
 → Best use for categorical data
 - e.g., most popular Hero group in Heroes of the Storm
- In Excel, =MODE()

Depiction: Mean, Median, Mode?

(a)

(b)

(c)

(d)

(e)
Depiction: Mean, Median, Mode?

(a) Mean, Median, Mode

(b) No Mode

(c) Mean, Median

(d) Mode

(e) Mode
Which to Use, Mean, Median, Mode?
Which to Use, Mean, Median, Mode?

- **Mean** many statistical tests with sample
 - Estimator of population mean
 - Uses all data

- **Median** is useful for skewed data
 - e.g., income data (US Census) or housing prices (Zillo)
 - e.g., *Overwatch* team (6 players): 5 people level 5, 1 person level 275
 - Mean is **50** - not so useful since no one at this level
 - Median is **5** - more representative
 - Does not use all data. “Resistant” to extremes (e.g., 275)
 - But what if were exam scores? Hard to “bring up” grade

- **Mode** is useful primarily for categorical data only
 - Most played League champion, most popular maze, ...
Other Measures of Position

- May not always want center
 - e.g., want to know best LoL Champions

- What other positions may be desired?
Other Measures of Position

• May not always want center
 – e.g., want to know best LoL Champions

• Maximum / Minimum
 – Not discussed more

• Trimmed Mean
• Quartiles
• Percentiles
Trimmed Mean

• Take “trimming” off top and bottom (typically 5% or 10%)
 – Reduces effects of extreme values, like median

• In Excel, =TRIMMEAN(array,percent)

Blue – original mean
Red – trimmed mean

[Image of histogram showing original mean in blue and trimmed mean in red]
Quartiles

- Sort values
- First quartile (Q1) is 25% from bottom
- Third quartile (Q3) is 75% from bottom
- (What is second quartile?)
- In Excel, =QUARTILE(array,n)
Percentiles

• Generalization of quartiles
 • N^{th} percentile is data point $n\%$ from bottom of data
• Interpolate as for first quartile
• In Excel, =PERCENTILE(array,k) (k: 0 to 1)
Summarizing Data, Part 2

• Ok, pile of numbers can now be summarized as one number
 – Mean, median, mode
• But is that enough?
• Q: What other major aspect of numbers haven’t we summarized?
Summarizing Data, Part 2

• Ok, pile of numbers can now be summarized as one number
 – Mean, median, mode
• But is that enough?
• Q: What other major aspect of numbers haven’t we summarized?

Measures of variation
(aka measures of dispersion, or measures of spread)
Summarizing Data, Part 2

“Then there is the man who drowned crossing a stream with an average depth of six inches.” – W.I.E. Gates

• Summarizing by single number rarely enough → need statement about **dispersion** (aka variation)

![Graph showing frequency and mean for player high scores](image)

Above: does single number (**mean**) tell you enough about data?
Dispersion Overview (1 of 3)

• Is data clumped or spread out?

https://mathbitsnotebook.com/Algebra1/StatisticsData/STSpread.html
Dispersion Overview (2 of 3)

• Is data clumped or spread out?

![Histogram showing age distribution of Best Actress Award winners from 1928 to 2009](image)
Dispersion Overview (3 of 3)

• Is data clumped or spread out?

“Motion and Scene Complexity for Streaming Video Games”
What are Some Measures of Dispersion?
Breakout 3

Set A: 2 4 6 8 10
Set B: 2 9 9 10 10

• Different ways to report dispersion with one number?
• What are pros and cons of each?
• Icebreaker, Groupwork, Questions

Range

- Difference between smallest and largest value
- Somewhat obvious, but doesn’t tell you much about “clumping”
 - Minimum may be zero
 - Maximum can be from outlier
 - Event not related to phenomena studied (e.g., 0 on project)
 - Maximum gets larger with # samples, so no “stable” point

In Excel, =MAX(array) - MIN(array)
Variance

• Compute **mean** of sample
• Compute how far each value in sample is from **mean**
 – Some can be less than **mean**, some greater
 → So **square** this difference (why square?)
• Divide by number of sample values – 1
 – The “-1” corrects “bias” when trying to estimate population variance using sample variance

\[
\text{Sample Variance} = s^2 = \frac{\sum(X - \overline{X})^2}{n - 1}
\]
Variance Example

• Sample kills in *League of Legends* match
 – 12, 20, 16, 18, 19
 – What is sample variance?

• First, **mean** = 85 / 5 = 17

<table>
<thead>
<tr>
<th>Kills</th>
<th>X – mean</th>
<th>(X – mean)2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>-5</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

$s^2 = (25 + 9 + 1 + 1 + 4) / (5 – 1) = 40 / 4 = 10$ kills squared

• In Excel, =VAR(array)

 “Larger” means “more spread”
 … but units odd
Standard Deviation

- Square-root of variance
- Usually, use standard deviation instead of variance
 - Why? → Same units as data (e.g., “kills” in previous example)
- Can compare standard deviation to mean (coefficient of variation, next)
- But first:
 - Mendenhall’s Empirical Rule
 - Z-score

\[s = \sqrt{\frac{\sum(x_i - \bar{x})^2}{n - 1}} \]
Mendenhall’s Empirical Rule

1. About **68% data** within one standard deviation of **mean**
 - interval between **mean-s** and **mean+s** contains about 68% of data
2. About **95%** within 2 standard deviations of **mean**
3. **Almost all** data within 3 standard deviations of **mean**

Rule assumes normal (‘Bell curve’) distribution
Z-Score

• Measure of how “far” from center (mean) single data point is
 – *Not* measure of dispersion for whole data set

\[Z = \frac{X - \bar{X}}{S} \]

Example

<table>
<thead>
<tr>
<th>Mean</th>
<th>469</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std dev</td>
<td>119</td>
</tr>
<tr>
<td>X</td>
<td>650</td>
</tr>
</tbody>
</table>

Z-score for X?

\[(650 - 469)/119 = 1.52\]
Coefficient of Variation (CV)

• Size of standard deviation relative to mean
 – e.g., large sd & large mean, not so spread
 – but large sd & small mean, more spread

• Standard deviation divided by mean
 – Can do this since same units!

• CV is “unit-less”, so measure of spread independent of quantity
 – E.g. seconds, clicks, spaces

Shown as percent (multiply by 100)

\[CV = \frac{S}{\bar{x}} \times 100 \]

What is the relative CV for each curve?

http://goo.gl/wrfVtH
Semi-Interquartile Range

- $\frac{1}{2}$ distance between Q_3 (75th percentile) and Q_1 (25th percentile)

- Guideline: use semi-interquartile (SIQR) for index of dispersion whenever using median as index of central tendency

$$\frac{Q_3 - Q_1}{2}$$
Index of Dispersion Example

(sorted) Lap Times

<table>
<thead>
<tr>
<th>Lap Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
</tr>
<tr>
<td>2.7</td>
</tr>
<tr>
<td>3.9</td>
</tr>
<tr>
<td>4.1</td>
</tr>
<tr>
<td>4.2</td>
</tr>
<tr>
<td>4.2</td>
</tr>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>4.8</td>
</tr>
<tr>
<td>4.9</td>
</tr>
<tr>
<td>5.1</td>
</tr>
<tr>
<td>5.1</td>
</tr>
<tr>
<td>5.3</td>
</tr>
<tr>
<td>5.6</td>
</tr>
<tr>
<td>5.9</td>
</tr>
</tbody>
</table>

- First, sort. Then, compute:
 - Mean = 4.4
 - Min = 1.9, Max = 5.9
 - Median = \([16 / 2]\) = 8^{th} = 4.5
 - Q1 = \(16 / 4\) = 8^{th} = 4.1
 - Q3 = 3 * 16 / 4 = 12^{th} = 5.1

- \(SIQR = (Q3 - Q1) / 2\) = 0.5
- \(Variance\) = 0.96
- \(Stddev\) = 0.98
- \(CV = stddev/mean\) = 0.22
- \(Range = max – min\) = 4
Breakout 4

• Group of 3!
• Rank *measures of dispersion* by sensitivity) to outliers
 – Variance
 – Range
 – Standard Deviation
 – Coefficient of Variation
 – Semi-interquartile Range

https://web.cs.wpi.edu/~imgd2905/d20/breakout/breakout-4.html
Ranking of Affect by Outliers?

Measure of Dispersion

- Variance
- Range
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range

Most to Least

http://www.a-levelmathstutor.com/images/statistics/outliers-graph01.jpg
Ranking of Affect by Outliers?

Measure of Dispersion
- Variance
- Range
- Standard Deviation
- Coefficient of Variation
- Semi-interquartile Range

Most to Least
- Range
 - Variance
 - Standard Deviation
 - Coefficient of Variation
- SIQR

Only for quantitative data! Categorical can’t quantify spread since no ‘distance’. Instead, give categories for given percentile of samples e.g., “90% of samples are in 3 categories”
Depicting Dispersion in Charts

- Histogram
- Cumulative distribution
- Box-and-Whiskers
- Error Bars
Box-and-Whiskers Chart

• Way of showing variation
• Highlight middle 50% (interquartile range, IQR)
 – “Box”
• Lines go to smallest non-outlier
 – “Whiskers”
• Points indicate outliers
• Middle line shows median
• Sometimes with mean
• **Outlier?** → Data value “way out there”, “far” from the rest
 – Formally, 1.5+ IQRs away from quartile
• Available in Excel

Also called “boxplot”
Error Bars for Columns and Points

- Line through graph point parallel to axis with "caps"
- Denotes uncertainty (variation) in value

Excel: click "+" → "Error Bars" → "type"

- Often:
 - 1 standard deviation
- Can be (discuss later):
 - 1 standard error
 - 1 confidence interval

State clearly!