Introduction

IMGD 2905

What is data analysis for game development?
What is data analysis for game development?

• Using game data to inform the game development process
• Where does this data come from?

→ Users playing game
 – Quantitative (instrumented)
 – Qualitative (subjective evaluation)
 – (But often lots more of the former!)
What can game analysis do for game development?

- **Improve level design** – e.g., see where players are getting stuck
- **Focus development on critical content** – e.g., see what game modes or characters are not used
- **Balance gameplay** – e.g., tune parameters for more competitive and fun combat
- **Broaden appeal** – e.g., hear if content/story is engaging or repulsing
- **Note**: game data often informs players, too
 - Analytics not dissimilar
Why is data analysis for game development needed?

- **Challenge**
 - Games gotten larger and more complex
 - Number of reachable states, characters
 → Game balance harder to achieve
 - Need for metrics to make sense of player behavior has increased

- **Opportunity**
 - New technologies enable aggregation, access and analysis
IMGD 2905 – Doing Data Analysis for Game Development

- **Data analysis pipeline** – get data from games, through analysis, to stakeholders
- **Summary statistics** – central tendencies of data
- **Visualization of data** – how to display analysis, illustrate messages
- **Statistical tests** – quantitatively determine relationships (e.g., correlation)
 - Probability needed as foundation (also used for game rules)
- **Regression** – model relationships
- **More advanced topics** (e.g., ML, Data management ...)

For this class:
- Described in lecture
- Read about in book
- Applied in projects

Foundations for Data Analysis for Game Development @ WPI

- **Statistics classes**
 - MA 2610 Applied Statistics for Life Sciences
 - MA 2611 Applied Statistics I
 - MA 2612 Applied Statistics II
- **Probability classes**
 - MA 2621 Probability for Applications
- **Data Science (minor and major)**
 - DS 1010 Introduction to Data Science
 - DS 2010 Modeling and Data Analysis
 - DS 3010 Computational Data Intelligence
 - DS 4433/CS4433 Big Data Management and Analytics
- **Data Mining**
 - CS 4445 Data Mining and Knowledge Discovery in Databases
- **Other**
 - CS 1004 Introduction to Programming for Non-Majors
 - CS 3431 Database Systems I

Note – other Stats and Probability classes are primarily geared for Math majors
Outline

• Overview (done)
• Game Analytics Pipeline (next)
• Game Data Analysis Examples

Sources of Game Data

Quantitative (Objective)
• Internal Testing
 – Developers
 – QA
• External Testing
 – Usability testing
 – Beta tests
 – Long-term play data

Qualitative (Subjective)
• Surveys
• Reviews
• Online communities
• Post mortems

How to get from data to dissemination?
→ Game analytics pipeline
Game Analytics Pipeline

1. Game
2. Raw Data
3. Extracted Data
4. Exploratory Graphs/Stats
5. Charts and Tables
6. Statistical Tests
7. Analysis
8. Presentation
9. Report
10. Dissemination

Game Analytics Pipeline - Example

1. HotS (Game)
2. Python
3. hots.csv
4. Excel
5. Relevant to Project 1!
6. Dissemination
7. PowerPoint
8. Word
9. Analysis
Game Analytics Tools

- **Games** – breadth of experience with games, specific experience with game to be analyzed
- **Tools** – import, clean, filter, format data so can analyze
- **Statistics** – measures of central tendency, measures of spread, statistical tests
- **Probability** – rules, distributions
- **Data Visualization** – bar chart, scatter plot, histogram, error bars
- **Technical Writing and Presentation** – white paper, technical talk; audience is peer group, developers, boss
Outline

- Overview (done)
- Game Analytics Pipeline (done)
- Game Data Analysis Examples (next)

Example:
Project Gotham Racing 4

- Publisher – Microsoft 2007
 – 134 vehicles, 9 locations, 10 game modes
- Analyzed data
 – (Authors worked at Microsoft)
 – 3.1 million log entries, 1000s of users
Project Gotham Racing 4: Results

Thoughts?

What are some main messages?

<table>
<thead>
<tr>
<th>Game Mode</th>
<th>Races</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFLINE_CAREER</td>
<td>1479586</td>
<td>47.63%</td>
</tr>
<tr>
<td>PGR_ARCADE</td>
<td>566705</td>
<td>18.24%</td>
</tr>
<tr>
<td>NETWORK_PLAY</td>
<td>584201</td>
<td>18.81%</td>
</tr>
<tr>
<td>SINGLEPLAYER_PLAY</td>
<td>185415</td>
<td>5.97%</td>
</tr>
<tr>
<td>NET_TOURNY_ELIM</td>
<td>2713</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Races</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREET_RACE</td>
<td>795334</td>
<td>25.60%</td>
</tr>
<tr>
<td>NET_STREET_RACE</td>
<td>543491</td>
<td>17.50%</td>
</tr>
<tr>
<td>ELIMINATION</td>
<td>216042</td>
<td>6.95%</td>
</tr>
<tr>
<td>HOTLAP</td>
<td>195949</td>
<td>6.31%</td>
</tr>
<tr>
<td>TESTTRACK_TIME</td>
<td>7484</td>
<td>0.24%</td>
</tr>
<tr>
<td>CAT_N_MOUSE_FREE</td>
<td>3989</td>
<td>0.13%</td>
</tr>
<tr>
<td>CAT_N_MOUSE</td>
<td>53</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Mode

- Offline career dominates
- Network tournament hardly used

Events

- Street race and network street race dominate
- Cat and mouse never used

Vehicles (not shown)

- 1/3 used in less than 0.1% of races
Project Gotham Racing 4: Conclusion

- Content underused - 30-40% of content in less than 1% of races
- Use to shift emphases for DLC, next version
 - Asset creation costs significant, so even 25% reduction noticeable
- Other (not shown)
 - Encouraging new players to play career mode
 - Increasing likelihood of continuing play
 - Encouraging new players to stay with F Class longer
 - Rather than move to more difficult to control A Class

Example: Halo 3

- Publisher – Microsoft 2007
 - Achievements: single player missions, challenges such as finding skulls, multiplayer accomplishments...
- Analyzed data
 - (Author worked at Microsoft)
 - 18,0000 players
Halo 3: Results

- Thoughts?
- What are some main messages?

73% of players completed campaign – Can compare to other Xbox games
- Took 26 days to accomplish
- Double that time for all original content
- DLC provides users up to 2 years of content

Good Descriptive Example
Example: League of Legends

- Publisher – Riot Games 2009
 - Rank: ~5 Tiers, 5 divisions each → 25
- User study (52 players)
 - Play LoL in controlled environment
 - Record objective data
 - (e.g., player rank and game stats)
 - Provide survey for subjective data
 - (e.g., match balance and enjoyment)

League of Legends: Results
League of Legends: Results

Objective
- Most teams are balanced but about 10% more than 3 from mean.
- Most games evenly matched but about 5% difference of 2 from mean.

Subjective
- Win? Game is balanced.
- Lose? Game is almost never fun (90%).
- Win? Game is fun (70%), never not fun.
League of Legends: Results

![Bar graph showing enjoyment levels for different balance scenarios: My team was much better, The teams were even, The other team was much better.]

- Imbalance in player’s favor the most fun!
- Matchmaking systems may want to consider - e.g., balance not so important, as long as player not always on imbalanced side.

Summary

- Data analysis for games increasingly important
 - Has potential to improve game development
- Knowledge and skills required
 - Scripting
 - Statistics
 - Data analysis
 - Writing and presentation

“Let’s get to it, already!”
-- Tracer (Overwatch)