Overview

- Use statistics to infer population parameters

We want to know about these parameters of the population.

We have these to work with:

- Sample
- Statistic (\bar{x}, sample mean)
- Inference
- Random selection

Population

Parameter (μ, population mean)
Overview

• Use statistics to infer population parameters

Outline

• Overview (done)
• Foundation (next)
• Confidence Intervals
• Hypothesis Testing
Dice Rolling (1 of 4)

• Have 1d6, sample (i.e., roll 1 die)
• What is probability distribution of values?

http://www.investopedia.com/articles/06/probabilitydistribution.asp

“Square” distribution

http://www.investopedia.com/articles/06/probabilitydistribution.asp
Dice Rolling (2 of 4)

• Have 1d6, sample twice and sum (i.e., roll 2 dice)
• What is probability distribution of values?

http://www.investopedia.com/articles/06/probabilitydistribution.asp
Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?
Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?

https://academo.org/demos/dice-roll-statistics/
Try rolling dice yourself!

Dice Rolling (4 of 4)

- Same holds for general experiments with dice (i.e., observing sample sum and mean of dice rolls)

http://www.muelaner.com/uncertainty-of-measurement/

Ok, neat – for “square” distributions.
But what about experiments with other distributions?
Sampling Distributions

• With large “enough” sample size, looks “bell-shaped” \(\rightarrow\) Normal!

• How many is large enough?
 – 30 (15 if symmetric distribution)

• Central Limit Theorem
 – Sum of independent variables tends towards Normal distribution

Why do we care about sample means following Normal distribution?

• What if we had only a sample mean and no measure of spread
 – e.g., mean rank for Overwatch is 50

• What can we say about population mean?
Why do we care about sample means following Normal distribution?

• What if we had only a sample mean and no measure of spread
 – e.g., mean rank for Overwatch is 50
• What can we say about population mean?
 – Not a whole lot!
 – Yes, population mean could be 50. But could be 100. How likely are each?
 → No idea!

Why do we care about sample means following Normal distribution?

• Remember this?

With mean and standard deviation → Allows us to predict range to bound population mean
Why do we care about sample means following Normal distribution?

Note, actual population mean (probably) in this range!

Outline

- Overview (done)
- Foundation (done)
- Confidence Intervals (next)
- Hypothesis Testing
Sampling Error (1 of 2)

- Population of 200 game durations
 - Mean $\mu = 69.637$
 - Std Dev $\sigma = 10.411$
- Experiment $N=20$ samples
 - Each 15 game durations (with replacement)
 - Table on right has 20 experiments
- Observations?
 - Stats (\bar{x}, s) differ each time!
 - Sometimes higher, sometimes lower than population (μ, σ)
 - Sample range varies a lot more than sample standard deviation
 - Population mean (μ) always within sample range

This variation \rightarrow Sampling error
Sampling Error (2 of 2)

- Error from estimating population parameters from sample statistics is sampling error.
- Exact error often cannot be known (do not know population parameters).
- But size of error based on:
 - Variation in population (σ) itself – more variation, more sample statistic variation (s).
 - Sample size (N) – larger sample, lower error.
 - Q: Why can’t we just make sample size super large?

Standard Error (1 of 2)

- Amount sample means will vary from sample to sample – Standard deviation of the sample means.
- Also, likelihood that sample statistic is near population parameter.

\[
SE = \frac{\sigma}{\sqrt{n}}
\]

Example:
\[
\begin{align*}
n &= 5 \\
\sigma &= 17 \\
SE &= \frac{17}{\sqrt{5}} \\
&= 7.6
\end{align*}
\]

So what? Can reason about population mean e.g., 95% confident that sample mean is within ~ 2 SE’s.
(Where does this come from?)
Standard Error (1 of 2)

• Amount **sample means** will vary from sample to sample
 – *Standard deviation of the sample means*

• Also, likelihood that sample statistic is near population parameter
 – Depends upon **sample size** (N)
 – Depends upon standard deviation (s)

\[
SE = \frac{\sigma}{\sqrt{n}}
\]

Example:

\[
\begin{align*}
 n &= 5 \\
 \sigma &= 17 \\
 SE &= \frac{17}{\sqrt{5}} \\
 &\approx 7.6
\end{align*}
\]

So what? Can reason about population mean e.g., **95% confident** that sample mean is within ~ 2 SE’s

(Example next)

Standard Error (2 of 2)

If N = 20:

- What will happen to x’s?
- What will happen to dots?

If N=100:

- What will happen to means?
- What will happen to bars?

http://www.biostathandbook.com/standarderror.html
Confidence Interval

- Range of values with specific certainty that population parameter is within
 - e.g., 90% confidence interval for mean *League of Legends* match duration: [28.5 minutes, 32.5 minutes]
Confidence Interval for Mean

- Probability of μ in interval $[c_1, c_2]$
 - $P(c_1 < \mu < c_2) = 1 - \alpha$
 - $[c_1, c_2]$ is confidence interval
 - α is significance level
 - $100(1 - \alpha)$ is confidence level
- Typically want α small so confidence level 90%, 95% or 99% (more on effect later)

Say, $\alpha = 0.1$. Could do k experiments (size n), find sample means, sort
- Graph distribution
- Interval from distribution:
 - Lower bound: 5%
 - Upper bound: 95%
 \rightarrow 90% confidence interval

We have to do k experiments, each of size n?

Confidence Interval Estimate

- Estimate interval from 1 experiment, size n
- Compute sample mean (\bar{x}), sample standard error (SE)
- Multiply SE by t distribution
- Add/subtract from sample mean
 \rightarrow Confidence interval

Ok, what is t distribution?
- Function, parameterized by α and n

- e.g., mean 30.5
 - $t \times SE = 2$
 - $30.5 - 2 = 28.5$
 - $30.5 + 2 = 32.5$
 - $[28.5, 32.5]$
t distribution

- Looks like standard normal, but bit “squashed”
- Gets more squashed as \(n \) gets smaller

- Note, can use standard normal (\(z \) distribution) when large enough sample size (\(N = 30+ \))

aka student’s \(t \) distribution ("student" was anonymous name used when published by William Gosset)

Confidence Interval Example

Suppose gathered game times in a user study (e.g., for your MQP!)

Can compute sample mean, yes

But really want to know where population mean is

\(\rightarrow \) Bound with confidence interval
Confidence Interval Example

- $\bar{x} = 3.90$, stddev $s=0.95$, $n=32$
- A 90% confidence interval (α is 0.1) for population mean (μ):
 \[3.90 \pm \frac{1.645 \times 0.95}{\sqrt{32}} \]
 \[= [3.62, 4.19] \]

- With 90% confidence, μ in that interval. Chance of error 10%.
- But, what does that mean?

(Sorted)

<table>
<thead>
<tr>
<th>Game Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
</tr>
<tr>
<td>2.7</td>
</tr>
<tr>
<td>2.8</td>
</tr>
<tr>
<td>2.8</td>
</tr>
<tr>
<td>2.8</td>
</tr>
<tr>
<td>2.9</td>
</tr>
<tr>
<td>3.1</td>
</tr>
<tr>
<td>3.1</td>
</tr>
<tr>
<td>3.2</td>
</tr>
<tr>
<td>3.2</td>
</tr>
<tr>
<td>3.3</td>
</tr>
<tr>
<td>3.4</td>
</tr>
<tr>
<td>3.6</td>
</tr>
<tr>
<td>3.6</td>
</tr>
<tr>
<td>3.7</td>
</tr>
<tr>
<td>3.8</td>
</tr>
<tr>
<td>3.9</td>
</tr>
</tbody>
</table>

(See next slide for depiction of meaning)

Meaning of Confidence Interval (α)

If 100 experiments and confidence level is 90%:
- 90 cases interval includes μ,
- 10 cases not include μ,

<table>
<thead>
<tr>
<th>Experiment/Sample</th>
<th>Includes μ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>no</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>yes $\alpha = 0.1$</td>
</tr>
</tbody>
</table>

| Total | yes $\geq 100 (1-\alpha)$ 90 |
| Total | no $< 100 \alpha$ 10 |
How does Confidence Interval Size Change?

- With sample size \(N\)
- With confidence level \(1 - \alpha\)

Look at each separately next.

How does Confidence Interval Change (1 of 2)?

- What happens to confidence interval when sample size \(N\) increases?
 - Hint: think about Standard Error
How does Confidence Interval Change (1 of 2)?

- What happens to confidence interval when sample size \(N\) increases?
 - **Hint:** think about Standard Error

\[
SE = \frac{s}{\sqrt{n}} \quad \bar{X} \pm t \frac{s}{\sqrt{n}}
\]

How does Confidence Interval Change (2 of 2)?

- What happens to confidence interval when confidence level \((1-\alpha)\) increases?
 - **90% CI = \([6.5, 9.4]\)**
 - 90% chance population value is between 6.5, 9.4
 - **95% CI =**
 - 95% chance population value is between
How does Confidence Interval Change (2 of 2)?

- What happens to confidence interval when confidence level \((1-\alpha)\) increases?
- **90% CI = [6.5, 9.4]**
 - 90% chance population value is between 6.5, 9.4
- **95% CI = [6.1, 9.8]**
 - 95% chance population value is between 6.1, 9.8
- Why is interval wider when we are “more” confident? See distribution on the right

Using Confidence Interval (1 of 2)

- Indicator of spread \(\rightarrow\) Error bars
- CI more informative than standard deviation
 - Standard deviation doesn’t change with \(N\)
 \(\rightarrow\) CI indicates range of population parameter

Make sure sample size \(N=30+\) (\(N=15+\) if somewhat normal. Any \(N\) if know distro is normal)
Using Confidence Interval (2 of 2)

Compare two alternatives, quick check for statistical significance

- **No overlap**? → 90% confident difference (at $\alpha = 0.10$ level)
- **Large overlap** (50%+)? → No statistically significant diff (at $\alpha = 0.10$ level)
- **Some overlap**? → more tests required

Statistical Significance versus Practical Significance (1 of 2)

Warning: may find statistically significant difference. That doesn’t mean it is *important*.

It’s a Honey of an O Latency can Kill?
Statistical Significance versus Practical Significance (1 of 2)

Warning: may find statistically significant difference. That doesn’t mean it is important.

It’s a Honey of an O

• Boxes of Cheerios, Tastee-O’s both target 12 oz.
• Measure weight of 18,000 boxes
• Using statistics:
 – Cheerio’s heavier by 0.002 oz.
 – And statistically significant ($\alpha=0.99)!$
• But … 0.0002 is only 2-3 O’s. Customer doesn’t care!

Latency can Kill?

• Lag in League of Legends
• Pay $$ to upgrade Ethernet from 100 Mb/s to 1000 Mb/s
• Measure ping to LoL server for 20,000 samples
• Using statistics
 – Ping times improve 0.8 ms
 – And statistically significant ($\alpha=0.99)!$
• But … humans cannot notice 1 ms difference!

Statistical Significance versus Practical Significance (2 of 2)

Warning: may find statistically significant difference. That doesn’t mean it is important.

It’s a Honey of an O

• Boxes of Cheerios, Tastee-O’s both target 12 oz.
• Measure weight of 18,000 boxes
• Using statistics:
 – Cheerio’s heavier by 0.002 oz.
 – And statistically significant ($\alpha=0.95)!$
• But … 0.0002 is only 2-3 O’s. Customer doesn’t care!

Latency can Kill?

• Lag in League of Legends
• Pay $$ to upgrade Ethernet from 100 Mb/s to 1000 Mb/s
• Measure ping to LoL server for 20,000 samples
• Using statistics
 – Ping times improve 0.8 ms
 – And statistically significant ($\alpha=0.99)!$
• But … humans cannot notice 1 ms difference!
What Confidence Level to Use (1 of 2)?

- Often see 90% or 95% (or even 99%) used
- Choice based on loss if wrong (population parameter is outside), gain if right (parameter inside)
 - If loss is high compared to gain, use higher confidence
 - If loss is low compared to gain, use lower confidence
 - If loss is negligible, lower is fine
- Example (loss high compared to gain):
 - Hairspray, makes hair straight, but has chemicals
 - Want to be 99.99% confident it doesn’t cause cancer
- Example (loss low compared to gain):
 - Hairspray, makes hair straight, only uses water
 - Ok to be 75% confident it straightens hair

What Confidence Level to Use (2 of 2)?

- Often see 90% or 95% (or even 99%) used
- Choice based on loss if wrong (population parameter is outside), gain if right (parameter inside)
 - If loss is high compared to gain, use higher confidence
 - If loss is low compared to gain, use lower confidence
 - If loss is negligible, lower is fine
- Example (loss negligible):
 - Lottery ticket costs $1, pays $5 million
 - Chance of winning is 10^{-7} (50% payout, so 1 in 10 million)
 - To win with 90% confidence, need 9 million tickets
 - No one would buy that many tickets ($9 mil to win $5mil!)
 - So, most people happy with 0.01% confidence
Outline

• Overview (done)
• Foundation (done)
• Confidence Intervals (done)
• Hypothesis Testing (next)

Hypothesis Testing

• Term arises from science
 – State tentative explanation \(\rightarrow\) hypothesis
 – Devise experiments to gather data
 – Data supports or rejects hypothesis
• Statisticians have adopted to test using inferential statistics
 \(\rightarrow\) Hypothesis testing

Just brief overview here \(\rightarrow\) Conversant Chapters 8 & 9 in book have more
Hypothesis Testing Terminology

- **Null Hypothesis** \((H_0)\) – hypothesis that no significance difference between measured value and population parameter (any observed difference due to error)
 - e.g., population mean time for Riot to bring up NA servers is 4 hours
- **Alternative Hypothesis** – hypothesis contrary to null hypothesis
 - e.g., population mean time for Riot to bring up NA servers is *not* 4 hours
- Care about alternate, but test **Null**
 - If data supports, alternate not true
 - If data rejects, alternate may be true
- **Why Null and alternate?**
 - Remember, data doesn’t “prove” hypothesis
 - Can only reject it (at certain significance)
 - So, reject **Null**
- **P-value** – smallest level that can reject **H\(_0\)**
 - “If p-value is low, then H\(_0\) must go”
 - How “low” based on “risk” of being wrong (like conf. interval)

Hypothesis Testing Steps

1. State hypothesis \((H)\) and null hypothesis \((H_0)\)
2. Evaluate risks of being wrong (based on loss and gain), choosing significance \((\alpha)\) and sample size
3. Collect data (sample), compute statistics
4. Calculate **p-value** based on test statistic and compare to \(\alpha\)
5. Make inference
 - Reject \(H_0\) if **p-value** less than \(\alpha\)
 - So, \(H\) may be right
 - Do not reject \(H_0\) if **p-value** greater than \(\alpha\)
 - So, \(H\) may not be right
Hypothesis Testing Steps (Example)

• State hypothesis (H) and null hypothesis (H₀)
 – H: Mario level takes less than 5 minutes to complete
 – H₀: Mario level takes 5 minutes to complete (H₀ always has =)
• Evaluate risks of being wrong (based on loss and gain), choosing significance (α) and sample size (N)
 – Player may get frustrated, quit game, so α = 0.1
 – Not sure of normally distributed, so 30 (Central Limit Theorem)
• Collect data (sample), compute statistics
 – 30 people play level, compute average minutes, compare to 5
• Calculate p-value based on test statistic and compare to α
 – p-value = 0.002, α = 0.01
• Make inference
 – Here: p-value less than α → REJECT H₀, so H may be right
 – Note, would not have rejected H₀ if p-value greater than α

Calculating P-value

probability density of each outcome, computed under Null hypothesis
p-value is area under curve past observed data point (e.g., sample mean)