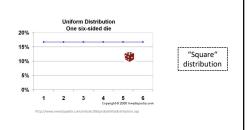


Dice Rolling (1 of 4)

- Have 1d6, sample (i.e., roll 1 die)
- What is probability distribution of values?

Dice Rolling (1 of 4)

- Have 1d6, sample (i.e., roll 1 die)
- What is probability distribution of values?

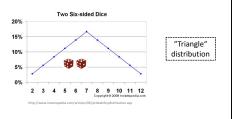


Dice Rolling (2 of 4)

- Have 1d6, sample twice and sum (i.e., roll 2 dice)
- What is probability distribution of values?

Dice Rolling (2 of 4)

- Have 1d6, sample twice and sum (i.e., roll 2 dice)
- · What is probability distribution of values?



Dice Rolling (3 of 4)

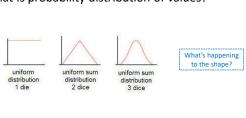
- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?

Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- · What is probability distribution of values?

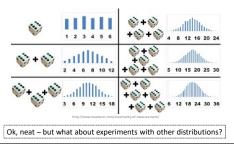
Dice Rolling (3 of 4)

- Have 1d6, sample thrice and sum (i.e., roll 3 dice)
- What is probability distribution of values?



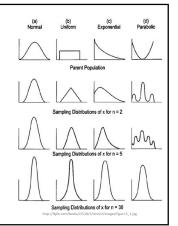
Dice Rolling (4 of 4)

 Same holds for experiments with dice (i.e., observing sample sum and mean of dice rolls)



Sampling Distributions

- With "enough" samples, looks "bellshaped" → Normal!
- How many is enough?
 - 30 (15 if symmetric distribution)
- Central Limit Theorem
 - Sum of independent variables tends towards Normal distribution

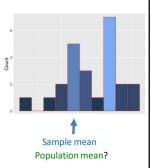


Why do we care about sample means following normal distribution?

- What if we had only a sample mean and no measure of spread
 - e.g., mean rank for
 Overwatch is 50
- What can we say about population mean?

Why do we care about sample means following normal distribution?

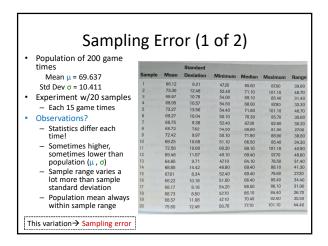
- What if we had only a sample mean and no measure of spread
 - e.g., mean rank for Overwatch is 50
- What can we say about population mean?
 - Not a whole lot!
 - Yes, population mean could be 50. But could be 100. How likely are each?
 - → No idea!



Why do we care about sample means following normal distribution? • Remember this? | Approx. 68% | Symmetric graph | Approx. 99.7% | within 3 ad of mean | Approx. 99.7% | within 3 ad of mean | Approx. 99.7% | With mean and standard deviation | Allows us to predict range to bound population mean | Allows us to predict range to bound population mean |

Why do we care about sample means following normal distribution? POPULATION Probable range of population mean

Outline • Overview (done) • Foundation (done) • Confidence Intervals (next) • Hypothesis Testing



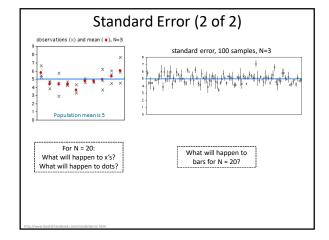
Sampling Error (2 of 2)

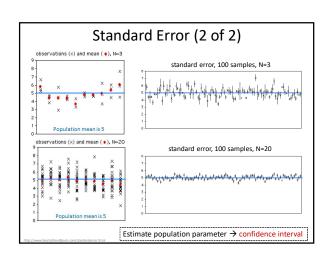
- Error from estimating population parameters from sample statistics
- Exact error often cannot be known (do not know population parameters)
- · But size of error based on:
 - Variation in population (s) itself more variation, more sample statistic variation
 - Sample size (N) larger sample, lower error
 - Q: Why can't we just make sample size super large?
- How much does it vary? → Standard error

Standard Error (1 of 2)

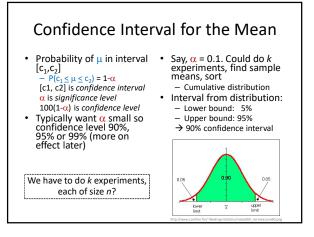
- Amount sample means vary from sample to sample
- Also likelihood that sample statistic is near population parameter
 - Depends upon sample size
 (N)
 - Depends upon standard deviation

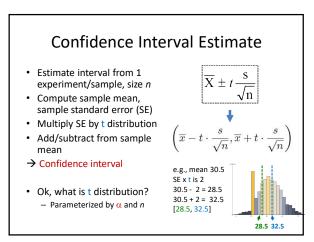
(Example next)

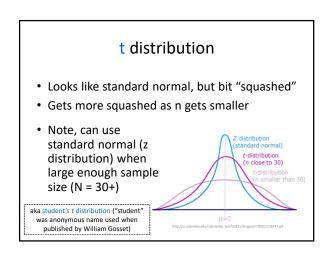


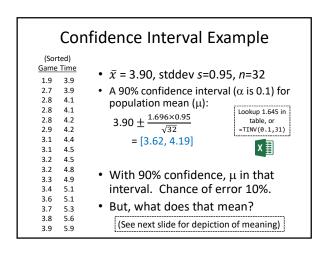


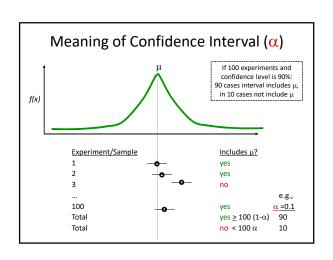
Confidence Interval • Range of values with specific certainty that population parameter is within - e.g., 90% confidence interval for mean League of Legends match duration: [28.5 minutes, 32.5 minutes] • Have sample of durations • Compute interval containing population duration (with 90% confidence) • In general: probability of µ in interval [c₁,c₂]











How does Confidence Interval Size Change?

- With number of samples (N)
- With confidence level (α)

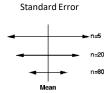
How does Confidence Interval Change (1 of 2)?

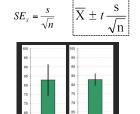
- What happens to confidence interval when sample larger (N increases)?
 - Hint: think about
 Standard Error

$$SE_{\bar{x}} = \frac{s}{\sqrt{n}}$$

How does Confidence Interval Change (1 of 2)?

- What happens to confidence interval when sample larger (N increases)?
 - Hint: think about
 Standard Error



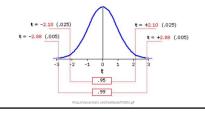


How does Confidence Interval Change (2 of 2)?

- 90% CI = [6.5, 9.4]
 - 90% chance population value is between 6.5, 9.4
- 95% CI = [6.1, 9.8]
 - 95% chance population value is between 6.1, 9.8
- · Why is interval wider when we are "more" confident?

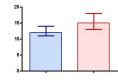
How does Confidence Interval Change (2 of 2)?

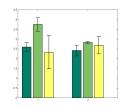
- 90% CI = [6.5, 9.4]
- 90% chance population value is between 6.5, 9.4
- 95% CI = [6.1, 9.8]
- 95% chance population value is between 6.1, 9.8
- Why is interval wider when we are "more" confident?



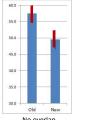
Using Confidence Interval (1 of 2)

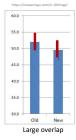
- Indicator of spread → Error bars
- CI can be more informative than standard deviation
- ightarrow indicates range of *population* parameter (make sure 30+ samples!)

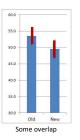




Using Confidence Interval (2 of 2)







Compare two alternatives, quick check for statistical significance

- No overlap? \rightarrow 90% confident difference (at α = 0.10 level) Large overlap (50%+)? \rightarrow No statistically significant diff (at α = 0.10 level)
- Some overlap? → more tests required

Statistical Significance versus Practical Significance (1 of 2)

Warning: may find statistically significant difference. That doesn't mean it is important.

It's a Honey of an O

Latency can Kill?

Statistical Significance versus Practical Significance (1 of 2)

Warning: may find statistically significant difference. That doesn't mean it is important.

Latency can Kill?

It's a Honey of an O

- Boxes of Cheerios, Tastee-O's both target 12 oz.
- Measure weight of 18,000
- Using statistics:
 - Cheerio's heavier by 0.002 oz.
 - And statistically significant
- But ... 0.0002 is only 2-3 O's. Customer doesn't care!

Statistical Significance versus Practical Significance (2 of 2)

Warning: may find statistically significant difference. That doesn't mean it is important.

It's a Honey of an O

- Boxes of Cheerios, Tastee-O's both target 12 oz.
- Measure weight of 18,000
- Using statistics:
 - Cheerio's heavier by 0.002 oz.
 - And statistically significant
- But ... 0.0002 is only 2-3 O's. Customer doesn't care!

Latency can Kill?

- Lag in League of Legends
- Pay \$\$ to upgrade Ethernet from 100 Mb/s to 1000 Mb/s
- Measure ping to LoL server for 20,000 samples
- Using statistics
- Ping times improve 0.8 ms
- And statistically significant $(\alpha = 0.99)!$
- But ... humans cannot notice 1 ms difference!

What Confidence Level to Use (1 of 2)?

- Often see 90% or 95% (or even 99%) used
- Choice based on loss if wrong (population parameter is outside), gain if right (parameter inside)
 - If loss is high compared to gain, use higher confidence
 - If loss is low compared to gain, use lower confidence
 - If loss is negligible, lower is fine
- Example (loss high compared to gain):
 - Hairspray, makes hair straight, but has chemicals
 - Want to be 99.99% confident it doesn't cause cancer
- Example (loss low compared to gain):
 - Hairspray, makes your hair straight, but has chemicals
 - Ok to be 75% confident it straightens hair

What Confidence Level to Use (2 of 2)?

- Often see 90% or 95% (or even 99%) used
- Choice based on loss if wrong (population parameter is outside), gain if right (parameter inside)
 - If loss is high compared to gain, use higher confidence
 - If loss is low compared to gain, use lower confidence
 - If loss is negligible, lower is fine
- Example (loss negligible):
 - Lottery ticket \$1, pays \$5 million
 - Chance of winning is 10⁻⁷ (1 in 10 million)
 - To win with 90% confidence, need 9 million tickets · No one would buy that many tickets!
 - So, most people happy with 0.01% confidence

Outline

- Overview (done)
- Foundation (done)
- Confidence Intervals (done)
- Hypothesis Testing (next)

Hypothesis Testing • Term arises from science - State tentative explanation → hypothesis - Devise experiments to gather data - Data supports or rejects hypothesis • Statisticians have adopted to test using inferential statistics Hypothesis Is True Ask Question Do Background Research Think Hypothesis Think Hypothesis Is True Hypothesis Is True Hypothesis Is True

Hypothesis Testing Terminology

- Null Hypothesis (H₀) hypothesis that no significance difference between measured value and population parameter (any observed difference due to error)
 - e.g., population mean time for Riot to bring up NA servers was 4 hours
- Alternative Hypothesis hypothesis contrary to null hypothesis
 - e.g., population mean time for Riot to bring up NA servers was not 4 hours
- Care about alternate, but test null
- If data supports, alternate not true
 If data rejects, alternate may be true
- Why null and alternate?
 - Remember, data doesn't "prove" hypothesis
 - Can only reject it (at certain significance)
 - So, reject Nu

- P-value smallest level that can reject H₀
- "If p-value is low, then H_o must go"
- How "low", consider s"risk" of being wrong

Hypothesis Testing Steps

- 1. State hypothesis (H) and null hypothesis (H₀)
- 2. Evaluate risks of being wrong (based on loss and gain), choosing significance (α) and sample size
- 3. Collect data (sample), compute statistics
- 4. Calculate p-value based on test statistic and compare to $\boldsymbol{\alpha}$
- 5. Make inference

→ Hypothesis testing

Just brief overview here. Next chapter in book has more.

- Reject H_0 if p-value less than α
- Do not reject ${\rm H_0}$ if p-value greater than α

Hypothesis Testing Steps (Example)

- State hypothesis (H) and null hypothesis (H₀)
 - H: Mario level takes less than 5 minutes to complete
 - H₀: Mario level takes 5 minutes to complete (H₀ always has =)
- Evaluate risks of being wrong (based on loss and gain), choosing significance (α) and sample size
 - $-\,$ Player may get frustrated, quit game, so α = 0.01
 - Note sure of normally distributed, so 30 (Central Limit Theorem)
- Collect data (sample), compute statistics
 - 30 people play level, compute average time, compare to 5
- Calculate p-value based on test statistic and compare to $\boldsymbol{\alpha}$
- p-value = 0.002, α = 0.01 Make inference
- Reject H_0 if p-value less than α (REJECT H_0), so H may be right
- Do not reject H_0 if p-value greater than α