
1

IMGD 1001:
Programming Practices;

Artificial IntelligenceArtificial Intelligence

Outline
Common Practices
Artificial Intelligence

IMGD 1001 2

Common Practices:
Version Control
Database containing files and past

history of them
Central location for all code
Allows team to work on related files

IMGD 1001 3

Allows team to work on related files
without overwriting each other’s work

History preserved to track down errors
Branching and merging for platform

specific parts

Based on Chapter 3.1, Introduction to Game Development

Common Practices:
Quality (1 of 3)
 Code reviews – walk through code by other

programmer(s)
 Formal or informal
 "Two pairs of eyes are better than one."
 Value is that the programmer is aware that

IMGD 1001 4

 Value is that the programmer is aware that
others will read

 Asserts
 Force program to crash to help debugging

Ex: Check condition is true at top of code, say pointer
not NULL before continuing

 Removed during release

Based on Chapter 3.1, Introduction to Game Development

Common Practices:
Quality (2 of 3)
 Unit tests

 Low level test of part of game
 See if physics computations correct

 Tough to wait until very end and see if there's a bug
 Often automated, computer runs through combinations
 Verify before assembling

IMGD 1001 5

 Acceptance tests
 Verify high-level functionality working correctly

 See if levels load correctly

 Note, above are programming tests (i.e. code,
technical)
 Still turned over to testers that track bugs, do gameplay

testing

Based on Chapter 3.1, Introduction to Game Development

Common Practices:
Quality (3 of 3)
 Bug database
Document & track bugs
Can be from

programmers,
publishers, customers

IMGD 1001 6

p ,
Classify by severity and

priority
Keeps bugs from falling

through cracks
Helps see how game is

progressing

Based on Chapter 3.1, Introduction to Game Development

2

Common Practices:
Pair (or "Peer") Programming
Two programmers at one workstation
One codes and tests, other thinks
Switch after fixed time

Results

IMGD 1001 7

Results
Higher-quality code
More bugs found as they happen

More enjoyable, higher morale
 Team cohesion
Collective ownership

http://en.wikipedia.org/wiki/Pair_programming

Outline
Common Practices (done)
Artificial Intelligence (next)

IMGD 1001 8

Group Exercise
Consider game where hero is in a pyramid

full of mummies.
 Mummy wanders around maze
When hero gets close, can “sense” and moves

quicker

IMGD 1001 9

quicker
When mummy sees hero and rushes to attack
 If mummy wounded, it flees

What “states” can you see? What are the
transitions? Can you suggest appropriate
code?

Introduction to AI
Opponents that are challenging, or allies

that are helpful
Unit that is credited with acting on own

Human-level intelligence too hard

IMGD 1001 10

g
But under narrow circumstances can do pretty

well
 Ex: chess and Deep Blue

Artificial Intelligence
Around in CS for some time

Based on Chapter 5.3, Introduction to Game Development

AI for CS different than AI for Games
Must be smart, but purposely flawed

 Lose in a fun, challenging way

 No unintended weaknesses
 No "golden path" to defeat
 Must not look dumb

Must perform in real time (CPU)

IMGD 1001 11

Must perform in real time (CPU)
 Configurable by designers

 Not hard coded by programmer

 "Amount" and type of AI for game can vary
 RTS needs global strategy, FPS needs modeling of

individual units at "footstep" level
 RTS most demanding: 3 full-time AI programmers
 Puzzle, street fighting: 1 part-time AI programmer

Based on Chapter 5.3, Introduction to Game Development

AI for Games:
Mini Outline
Introduction (done)
Agents (next)
Finite State Machines

IMGD 1001 12

3

Game Agents (1 of 3)
Most AI focuses around game agent

 Think of agent as NPC, enemy, ally or neutral

 Loops through: sense-think-act cycle
 Acting is event specific, so talk about sense+think

IMGD 1001 13
Based on Chapter 5.3, Introduction to Game Development

Game Agents (2 of 3)
Sensing
Gather current world state: barriers,

opponents, objects
Need limitations: avoid "cheat" of looking at

game data

IMGD 1001 14

game data
 Typically, same constraints as player (vision,

hearing range)
Often done simply by distance direction (not

computed as per actual vision)
Model communication (data to other agents)

and reaction times (can build in delay)

Game Agents (3 of 3)
Thinking
 Evaluate information and make a decision
As simple or elaborate as required
 Two ways:

P d d t k l d t i ll h d

IMGD 1001 15

 Pre-coded expert knowledge, typically hand-
crafted if-then rules + randomness to make
unpredictable

Search algorithm for best (optimal) solution

Based on Chapter 5.3, Introduction to Game Development

Game Agents:
Thinking (1 of 3)
 Expert Knowledge

 Finite state machines, decision trees, … (FSM most
popular, details next)

 Appealing since simple, natural, embodies common
sense

IMGD 1001 16

Ex: if you see enemy weaker than you, attack. If
you see enemy stronger, then flee!

 Often quite adequate for many AI tasks
 Trouble is, often does not scale

Complex situations have many factors
Add more rules
Becomes brittle

Based on Chapter 5.3, Introduction to Game Development

Game Agents:
Thinking (2 of 3)
Search
 Look ahead and see what move to do next
 Ex: piece on game board, pathfinding (ch

5.4)

IMGD 1001 17

Machine learning
 Evaluate past actions, use for future
 Techniques show promise, but typically too

slow
Need to learn and remember

Based on Chapter 5.3, Introduction to Game Development

Game Agents:
Thinking (3 of 3)
Making agents stupid

 Many cases, easy to make agents dominate
Ex: bot always gets head-shot

 Dumb down by giving "human" conditions, longer
reaction times, make unnecessarily vulnerable

IMGD 1001 18

 Agent cheating
 Ideally, don't have unfair advantage (such as more

attributes or more knowledge)
 But sometimes might, to make a challenge

Remember, that's the goal, AI lose in challenging way
 Best to let player know how agent is doing

Based on Chapter 5.3, Introduction to Game Development

4

AI for Games:
Mini Outline
Introduction (done)
Agents (done)
Finite State Machines (next)

IMGD 1001 19

Finite State Machines (1 of 2)

Wander Attack

See Enemy

Low
 H

ea
lthNo Enem

y

No Enemy

IMGD 1001 20

 Abstract model of computation
 Formally:

 Set of states
 A starting state
 An input vocabulary
 A transition function that maps inputs and the

current state to a next state

Flee L

m
y

Based on Chapter 5.3, Introduction to Game Development

Finite State Machines (2 of 2)
Most common game AI software pattern

 Natural correspondence between states and
behaviors

 Easy to understand
 Easy to diagram

IMGD 1001 21

 Easy to program
 Easy to debug
 Completely general to any problem

 Problems
 Explosion of states
 Often created with ad-hoc structure

Based on Chapter 5.3, Introduction to Game Development

Finite-State Machines:
Approaches
Three approaches
Hardcoded (switch statement)
Scripted
Hybrid Approach

IMGD 1001 22
Based on Chapter 5.3, Introduction to Game Development

Finite-State Machine:
Hardcoded FSM
void RunLogic(int * state) {

switch(state) {
case 0: //Wander

Wander();
if(SeeEnemy()) { *state = 1; }
break;

case 1: //Attack
Attack();

IMGD 1001 23

Attack();
if(LowOnHealth()) { *state = 2; }
if(NoEnemy()) { *state = 0; }
break;

case 2: //Flee
Flee();
if(NoEnemy()) { *state = 0; }
break;

}
}

Based on Chapter 5.3, Introduction to Game Development

Finite-State Machine:
Problems with Switch FSM
1. Code is ad hoc
 Language doesn't enforce structure

2. Transitions result from polling
 Inefficient – event-driven sometimes better

IMGD 1001 24

3. Can't determine 1st time state is entered
4. Can't be edited or specified by game

designers or players

Based on Chapter 5.3, Introduction to Game Development

5

Finite-State Machine:
Scripted with alternative language
AgentFSM
{

State(STATE_Wander)
OnUpdate

Execute(Wander)
if(SeeEnemy) SetState(STATE_Attack)

OnEvent(AttackedByEnemy)
SetState(Attack)

State(STATE_Attack)

IMGD 1001 25

OnEnter
Execute(PrepareWeapon)

OnUpdate
Execute(Attack)
if(LowOnHealth) SetState(STATE_Flee)
if(NoEnemy) SetState(STATE_Wander)

OnExit
Execute(StoreWeapon)

State(STATE_Flee)
OnUpdate

Execute(Flee)
if(NoEnemy) SetState(STATE_Wander)

}

Based on Chapter 5.3, Introduction to Game Development

Finite-State Machine:
Scripting Advantages
1. Structure enforced
2. Events can be triggered, as well as

polling
3 OnEnter and OnExit concept exists

IMGD 1001 26

3. OnEnter and OnExit concept exists
4. Can be authored by game designers
 Easier learning curve than straight C/C++

Finite-State Machine:
Scripting Disadvantages
 Not trivial to implement
 Several months of development

 Custom compiler
 With good compile-time error feedback

 Bytecode interpreter

IMGD 1001 27

 Bytecode interpreter
 With good debugging hooks and support

 Scripting languages often disliked by users
 Can never approach polish and robustness of

commercial compilers/debuggers
 Though, some are getting close!

Based on Chapter 5.3, Introduction to Game Development

Finite-State Machine:
Hybrid Approach
 Use a class and C-style macros to approximate a

scripting language
 Allows FSM to be written completely in C++

leveraging existing compiler/debugger
 Capture important features/extensions

 OnEnter OnExit

IMGD 1001 28

 OnEnter, OnExit
 Timers
 Handle events
 Consistent regulated structure
 Ability to log history
 Modular, flexible, stack-based
 Multiple FSMs, Concurrent FSMs

 Can't be edited by designers or players
 Kent says: "Hybrid approaches are evil!"

Based on Chapter 5.3, Introduction to Game Development

