Game Balance

Outline

- Gameplay (done)
- Level Design (done)
- Game Balance (this deck)

Mini-Outline

- Broadly, game balance includes:
 - Player-Player (next)
 - Player-Gameplay
 - Gameplay-Gameplay

Player/Player Balance (1 of 3)

- Players should have "fair" chance of winning
 - Advantage only in skill
 - Any luck should be infrequent, minor and equal to both
- Ex: League of Legends
 - Say, Jax beats Shen every time.
 - Does that mean unbalanced?
 - Not necessarily, look more closely
 - Suppose friend said could beat everyone as Jax all the time.
 - Would only be a problem if beginner as Jax always beat expert as Shen
 - And if could choose characters? Jax versus Jax?
 - Need to consider skill of player, too

Player/Player Balance (2 of 3)

- Two heroes square off for duel, poised in kung fu stances. Both are equally matched.
- They wait for an advantage.
- Hours pass. Days pass.
- Breeze comes by, flicks spec of dust in one's eye
- Blinks, frowns then bows
- Know result without fight → tiny asymmetry enough to decide outcome!
- If breeze or dust decided game, is that ok?
- No ... you'd want your money back!

Player/Player Balance (3 of 3)

- Allow to arrange victory by skill and judgment
- Avoid results mostly as stroke of luck
 - Could be set right from the start or magnified as game progresses (ex: start close to gold mine provides escalating advantage)
- Simplest way is to have symmetry
 - Same weapons, manoeuvres, hit points (sports do this – teams are often symmetric, or get symmetry by swapping sides (e.g. Baseball))
 - But note, not always the most interesting. Want different moves on fighters, say. (More later)
Symmetry

- Symmetry is fine in abstract games (ex: chess, basketball)
- In realistic games, would be problem (ex: U.S. versus Iraq, game symmetry would be bothersome since not realistic)
- While easy, kind of an insult
 - Ex: LOTR BIME Warg’s same as horses ... but Wargs can bite in book/movie!
- Better is functional symmetry that is not obvious

Symmetry in Level Design

- Can avoid obvious symmetry
 - Ex: each player has impassable region on flank (but water for one, mountain range for another)
 - Knights and soldiers can’t cross
 - Later on, advanced units can cross
 - Choice of unit depends upon barrier
 - Mountainers to cross minths, ships to cross sea

- Players can choose asymmetric start location
 - Should not be deciding factor (Ex: you choose downwind port, so you lose – like dust in eye)
 - Avoid making start location critical decision
 - Ex: potential mines in many spots, so not critical

Symmetry in Game Design

- Make all choices for players functionally the same
 - Ex: Warcraft II – humans have griffons, and orcs have dragons; both flying toughies.

- But even slight differences make interesting
 - Ex: Warcraft II – orc player’s runes explode, making use in mountain passes good

- "Just broken" asymmetry easier to manage than total asymmetry (can compensate for a few units, abilities)

Mini-Outline

- Broadly, game balance includes:
 - Player-Player
 - Player-Gameplay (next)
 - Gameplay-Gameplay
Player/Gameplay Balance: Introduction (1 of 3)

- Means remembering that the business is about interactivity
 - Think about player's relationship to the game
 - Ex: If had to "tune" the T.V. every time channel surf, would not do it much
 - Likewise, should not struggle for small reward
- Ex: Baldur's Gate
 - Attributes are 3-18 (why?)
 - Can re-generate if don't like your numbers
 - So, re-generate until all 18's
 - Test of endurance!

Sub-Outline

- Again, true balance is an art, but three guidelines that can help...
 1) Reward the player
 2) Let the machine do the work
 3) Make a game that you play with, not against

Based on Chapter 5, game architecture and design by Rollings and Morris

Reward the Player

- Player will have to learn. Will make mistakes (discouraging)
- Want to offset with reward when they do something right
- Ex: Virtua Fighter, takes longer to learn complicated moves (Sarah's backflip. Reward comes from seeing flip (eye candy) and punch in kidneys (payoff))
- Best when expand game options
 - Ex: "Now with backflip, I can see new use for reverse punch"
- In general, better to reward player for something right than punish for something wrong
 - Punishment makes players not want to play

Let the Machine do the Work

- Computer is tool to take care of wide-range of tedious tasks
- Interface should show player world and let player manipulate
- Blur of boundary between chore and game feature
 - RPG could provide graph so player can manually draw map as they explore... but is that fun?
 - Ex: In D&D, can tell D.M. "We go back to the dungeon entrance". Easy, fun. But what if a game makes player walk back over map that has been seen? Boring, no fun.
 - Ex: Myst provides lightning bolt move to avoid tedium
 - Other examples?
- Remember, if choice/option is no-brainer, then AI should take care of it!
Mini-Outline

- Broadly, game balance includes:
 - Player-Player
 - Player-Gameplay
 - Gameplay-Gameplay (next)

Gameplay/Gameplay Balance: Introduction (1 of 2)

- Consider *Warcraft* 2, with dozens of units.
 - Nearly perfectly balanced.
 - No unit costs so much you don’t want it
 - No unit too weak you can do without it
 - Either got lucky or lots of play testing (probably the latter)
 - Strong *Rock-Paper-Scissors* relationship
 - Have to play all units, none are dispensable

Gameplay/Gameplay Balance: Introduction (2 of 2)

- Challenges when balancing aspects of gameplay?
 - Want variety of interesting choices, rather than single, dominant choice
 - Best choices depend upon choices of other players (or on AI)
 - As a designer, not easy to see how frequently different choices will be worth making, but need to know to balance game
 - Sounds like catch-22? Can use simple concepts to make first guess
 - Then lots of play testing to fine tune! ☺

Game Balance (1 of 3)

- Establish the value of each game choice
 - For game balance, each choice must
 - Not be reducible to simple value (else too easy for player to determine if dominates/nationed)
 - Have factors that even out
 - Example where evens out: Pirate game
 - Dreadnoughts > Galleons > Brigantines
 - All have identical functions
 - If Dreadnoughts 2x more power, then (for balance) Galleons should take ½ time to spawn so will have 2 Galleons for each Dreadnought

Game Balance (2 of 3)

- Example where doesn’t even out: *Starcraft*
 - Mutalisks fly over any terrain, but cannot fight other fliers
 - Wraiths are not as tough, but can attack other fliers
 - Observers can see enemy, but not fight
 - There is no expression for values since different things?
 - Another example, in the Pirate game
 - Instead of spawn rate, compensate by making Dreadnoughts slowest, Brigantines fastest
 - Getting more interesting gameplay since player uses ships differently, but what about balance?

Game Balance (3 of 3)

- Use weights to combine to get average set combining all factors based on perceived importance
 - Then, adjust component values so all units are useful
 - How to adjust? Lots of play testing!
 - Often provide tools so level designers can more easily balance
 - Ex: new_tank2.gm6
Group Exercise

- Consider RPS, but if win with Rock get 4 points ... now, which used most, R/P/S?
- Break into groups
- 2 players play, 1 player keeps track of what is thrown and score (use tally marks)

Player A	Player B
R | P | S | Score A | R | P | S | Score B

- When done, tally for entire class
 - (Put all winners in Player A column, for ease)

Intransitive Game Mechanics (1 of 3)

<table>
<thead>
<tr>
<th></th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0</td>
<td>-1</td>
<td>+4</td>
</tr>
<tr>
<td>Paper</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Scissors</td>
<td>-4</td>
<td>+1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Payoff Matrix
- Say payoff is R, P, S and frequency r, p, s
- Want to know how often used (r, p, s)

Intransitive Game Mechanics (2 of 3)

- Net payoff R is (0 x r) + (-1 x p) + (4 x s)
 1) R = -1p + 4s
 2) P = r - s
 3) S = -4r + p
- Sum must be zero (zero sum game, whatever one player gains other loses. Both cannot have net gain.)
 - R + P + S = 0 (eq1)
- All net costs must be equal else would favor (remember, triangle example)
 - (eq2) R = P = S (eq3)

Intransitive Game Mechanics (3 of 3)

- Solve:
 - (eq1) -1p + 4s + r - s -4r + p = 0
 - (eq2) -1p + 4s = -4r + p
 - 2p = 8r + 2p + 4r
 - Since r + p + s = 1 (sum of probabilities, player choice)
 r + 4r + r = 1
 6r = 1 → r = 0.17, s = 0.17, p = 0.64
- Ratio → Rock and Scissors 17%, Paper 64%
- Probably not what expected.
- Often result ... if one option more expensive, others are most affected

Combinatorial Explosions

- How many components should there be to make interesting?
 - Too few? Then becomes trivial (Ex: in Hastings, only way to change power base is to put infantry on hill)
 - Too many? Then too hard to have skilled play
- Rule of thumb: N factors that could modify core mechanics, and each boolean (hill or not, rain or not ...) → 2^N possible combinations ... increases rapidly with N
 - N=24 gives about 16 million combinations!
- Err on the side of caution
 - “In Populous (EA God-game), should have lots of characters or half-dozen? Noticed would be easier to understand game experience with few, versatile units rather than many specific ones.”
 Richard Leinfellner (executive in charge of Bullfrog)

Design Scalability

- Be careful: Intransitive designs are inflexible
 - If have balanced relationship and remove one, will have dominated strategy
 - Ex: RPS and remove R ... always choose S since can’t lose!
- If project lead says behind schedule, so don’t include 5th orc type
 - Elegant design falls like a house of cards!
- But is relatively easy to add components
 - Doesn’t have to be symmetrical, can be redundant or useful in only a few cases
- Ex: scout, or special spell
- Lesson
 - If you are going to scale, scale up not down
A Game Balance Checklist (1 of 3)

- **Player-Player**
 - Ensures game is fair
 - Especially important for multiplayer games
 - Symmetry works for this, but asymmetry may be needed or more appealing (try “just broken”)
 - Make sure any asymmetry doesn’t magnify imbalance as game progresses

- **Golden rule**: a player should never be put in an unwinnable situation through no fault of their own

A Game Balance Checklist (2 of 3)

- **Player-Gameplay**
 - Ensures player never becomes frustrated
 - Continually brings player back for more
 - Interface should not present obstacles
 - Small rewards are needed to guide player
 - Ex: Fancy animation or new powers
 - The best rewards *widen options*

- **Golden rule**: The game should be fun to learn as well as to play, and it should be *more* fun the more you master it

A Game Balance Checklist (3 of 3)

- **Gameplay-Gameplay**
 - Ensures no element redundant or useless
 - Can do briefly by making factor table for each attribute (Ex: fire, range ...)
 - Make sure each unit is best at something
 - Each component dynamically best, not statically so
 - Obliges player to alter tactics
 - Don’t have to have every component equally useful
 - Cost, availability, and ease of use should reflect value
 - Get right through play testing

- **Golden rule**: all options in game must be worth using sometime, net cost of each option must be on par with payoff