

Polygonal Modeling Basics:
 WMII
 Normals
 \square Face normals are at right angle to polygon
 -Tell what direction if facing, how to render, how light will react
 \square Viewed from other side, is invisible - Fine if on inside (say, of solid cube)
 \square When debugging, pay attention to normals as well as polygons

\qquad

Modeling ToOlS
\square Certain tools and techniques used 80-90\% of the
time
\square Line Tool:
Draw outline of object and extrude to get 3-d shape
\square Ex: profile of car. Use line tool. Then, extrude
outward to get shape.

Polygon Reduction (2 of 4)
םLevel-of-detail (LOD) meshes
Multiple versions of object, progressively
lower levels
\square When far away, use low level
Assume more objects in Field of View
\square When close, use higher level
Assume fewer objects in Field of View
IMGD 1001

Texture
\square Shader - define surface property of object - how shiny, bumpy, how light effects
-Texture - bitmap plugged into shader that defines image we want to appear on object

```
IMGD 1001
MGD 1001 C 64 Introduction to Game Development



\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{WPI} \\
\hline \multicolumn{2}{|l|}{Introduction to Transformations} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
\(\square\) A transformation changes an object's \\
- Size (scaling) \\
- Position (translation) \\
- Orientation (rotation)
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{Transform object by applying sequence of matrix multiplications to object vertices} \\
\hline IMGD 1001 & 26 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{WPI} \\
\hline \multicolumn{2}{|l|}{Transformation uses Matrices} \\
\hline \multicolumn{2}{|l|}{\(\square\) All transformations can be performed using matrix/vector multiplication} \\
\hline \multicolumn{2}{|l|}{\(\square\) Allows pre-multiplication of all matrices} \\
\hline \multicolumn{2}{|l|}{\(\square\) Note: point ( \(x, y\) ) needs to be represented as ( \(x, y, 1\) ), also called homogeneous coordinates} \\
\hline \(7 \mathrm{Mc6} 1001\) & 32 \\
\hline
\end{tabular}




```

