
1

IMGD 1001:
Debugging

Debugging Introduction (1 of 2)
Debugging is methodical process for

removing mistakes in a program
So important, whole set of tools to help.

Called "debuggers"

2

Called debuggers
Trace code, print values, profile
 Integrated Development Environments

(IDEs) (such as Flash and Game Maker)
have one built in

A good debugger is really useful...

Based on Chapter 3.6, Introduction to Game Development
IMGD 1001

Debugging Introduction (2 of 2)
 But debugging still frustrating
 Beginners don't know how to proceed
 Even advanced can get "stuck"

 Don't know how long it takes to find
 Variance can be high

3

 Variance can be high
 But can treat them in aggregate for predictions

What are some tips?
What methods can be applied?

Based on Chapter 3.6, Introduction to Game Development
IMGD 1001

Outline
Five-step debugging process
Prevention
Debugging tips

4IMGD 1001

Similar steps to Scientific Method
Evaluation
Conjecture
Deduction
T t

5

Test

Lather, rinse, repeat

Let’s do one

IMGD 1001

The Problem: Bubble Sort
We need a routine to sort a list
Algorithm:
Compare adjacent entries in the list
 If they’re out of order, swap them

6

Move on to the next pair
Repeat until the list is sorted

Yes, this is vague
But you might be lucky to get this much

description of an algorithm in your code!

IMGD 1001

2

Work Through …

7

Consider array:
3 5 1 2

Evaluate, then Conjecture/Deduction,
then Fix, then Test

IMGD 1001

Step 1: Reproduce the
Problem Consistently
Find case where always occurs
 Things like "Sometimes game crashes after I

kill the boss" don’t help much

Identify steps to get to bug

8

g g
 Ex: start single player, room 2, jump to top

platform, attack left, …
 Produces systematic way to reproduce

Consider record/playback
Console developers may use camcorder!

IMGD 1001

Step 2: Collect Clues
 Collect clues as to where is bug

 Clues suggest where problem might be
 Ex: if crash using projectile, what about code that

handles projectile creation and shooting?

 And beware that some clues are false
E if b f ll l i thi k th

9

 Ex: if bug follows explosion, may think they are
related, but may be from something else

 Don't spend too long - get in and observe
 Ex: crash when shooting arrow. See reference pointer

from arrow to unit that shot arrow should get
experience points, but it is NULL

 That's the bug, yes, but why is it NULL?

IMGD 1001

Step 3: Pinpoint Error
1) Propose a hypothesis and prove or disprove

 Ex: suppose arrow pointer corrupted during flight.
 Add code to print out values of arrow in air.
 But equals same value that crashes.
 Hypothesis is wrong. But now have new clue!
 Ex: suppose unit deleted before experience points added. Print

out values of all units before fire and after all deleted.
 Yep, that's it!

10

 Yep, that s it!

2) Binary-search method (note, can use in conjunction with
hypothesis test above, too)
 Sherlock Holmes: "when you have eliminated the impossible,

whatever remains, however improbably, must be the truth."
 Setting breakpoints, look at all values, until discover bug
 The "divide" part means break it into smaller sections

 Ex: if crash, put breakpoint ½ way. Is it before or after? Repeat.
 Look for anomalies, NULL or NaN values

IMGD 1001

Step 4: Repair the Problem
 Propose solution. Exact solution depends upon

stage of problem
 Ex: late in development cannot change data

structures. Too many other parts use it!
Worry about "ripple" effects

11

 Ideally, want original coder to fix
 If not possible, at least try to talk with original

coder for insights

 Consider other similar cases, even if not yet
reported
 Ex: other projectiles may cause same problem as

arrows did

IMGD 1001

Step 5: Test Solution
Obvious, but can be overlooked if

programmer is "sure" they have fix
 Programmer can be wrong!

So, test that the solution repairs bug

12

, p g
Best done by independent tester

Test if other bugs introduced
Beware of "ripple" effect

IMGD 1001

3

Debugging Prevention
 Use consistent style, variable names
 Indent code, use comments
 Always initialize variables when declared
 Avoid hard-coded constants

 They make code brittle

13

 Add infrastructure, tools to assist
 Alter game variables on fly (speed up testing)
 Visual diagnostics (maybe on avatars)
 Log data (events, units, code, time stamps)

 Avoid identical code
 Harder to fix if bug found
 Use a script/function

 Verify coverage (test all code) when testing

IMGD 1001

Debugging Tips (1 of 3)
 Fix one thing at a time

 Don’t try to fix multiple problems

 Change one thing at a time
 Tests hypothesis. Change back if doesn't fix problem!

 Start with simpler case that works
 Then add more complex code one thing at a time

14

 Then add more complex code, one thing at a time

 Question your assumptions
 Don’t even assume simple stuff works, or "mature"

products
 Ex: libraries and tutorials can have bugs

 Minimize interactions
 Systems can interfere, or make slower, so isolate the bug

to avoid complications

IMGD 1001

Debugging Tips (2 of 3)
Minimize randomness
 Ex: can be caused by random seed or player

input. Fix input (script player) so reproducible

 Break complex calculations into steps
 May be equation that is at fault or "cast" badly

15

 Check boundary conditions
 Classic "off by one" for loops, etc.

 Use debugger
 Breakpoints, memory watches, stack …

 Check code recently changed
 If bug appears, may be in latest code (not even

yours!)
IMGD 1001

Debugging Tips (3 of 3)
 Take a break!

 Too close, can't see it
 Provide fresh prospective

 Explain bug to someone else
 Helps retrace steps and others provide alternate

16

 Helps retrace steps, and others provide alternate
hypotheses

 Debug with partner
 Provides new techniques
 Same advantage with code reviews, peer

programming

 Get outside help
 Tech support for consoles, Web examples, libraries, …

IMGD 1001

Tough Debugging Scenarios and
Patterns (1 of 3)
 Bug in Release but not in Debug

 Often in initialized code
 Or in optimized code

 Turn on optimizations one-by-one

 Bug in Hardware but not in Dev Kit
 Usually dev kit has extra memory (for tracing etc)

17

 Usually dev kit has extra memory (for tracing, etc.)
 Suggests memory problem (pointers), stack overflow, not

checking memory allocation

 Bug Disappears when Changing Something Innocuous
 Likely timing problem (race condition) or memory problem
 Even if looks like gone, probably just moved

 Keep looking!

Based on Chapter 3.5, Introduction to Game Development
IMGD 1001

Tough Debugging Scenarios and
Patterns (2 of 3)
 Truly Intermittent Problems
 Maybe best you can do is grab all data

values (and stack, etc.) and look at ("Send
Error Report")

 Unexplainable Behavior

18

 Unexplainable Behavior
 Ex: values change without touching.

Usually memory problem. Could be from
supporting system. Retry, rebuild, reboot,
re-install.

Based on Chapter 3.5, Introduction to Game Development
IMGD 1001

4

Tough Debugging Scenarios and
Patterns (3 of 3)
 Bug in Someone Else’s Code
 “No it is not.” Be persistent with own code first.
 Find concrete support for your claim!

 Small reproduction case
 It's not in hardware

 Ok very rarely but expect it not to be unless you

19

 Ok, very, rarely, but expect it not to be, unless you
are designing the hardware too!

 Download latest firmware, drivers
 If really is, best bet is to help isolate to speed

others in fixing it
 Meanwhile, you probably need to find a

workaround or alternative
 There is usually more than one way to write the

code you want!
IMGD 1001

