The Game Development
Process
Game Programming
-

WP

g

OQutline

® Teams and Processes
® Debugging
® Select Languages
® Misc (as time allows)
- Al
— Multiplayer

- Game content creators are artist and designers

® Programmers can be thought of as providing
services for content

- But fate of entire game rests in their hands
Think about roles in your projects

- Great design and art needed. But where is game
without programming to make it work?

Introduction
Used to be programmers created games
- But many great programmers not great game
makers
With budget shift, emphasis has shifted
o
I WP!

Based on Chapter 3.1, /ntroduction to Game Development

bots, etc.
® Often in scripting language (rest is in C++,
more on languages next)
— Produce faster iterations

- Allow technical designers/artists to change
behaviors

— More appropriate language for domain (ex:
Al probably not easiest in C++)

Programming Areas - Game Code
® Everything directly related to game itself
- How camera behaves, score is kept, Al for
H
I WP

Based on Chapter 3.1, Introduction to Game Development

5

Programming Areas - Game Engine

® Support code that is not game specific

-~ More than just drawing pretty 3d graphics
(that is actually the graphics engine, part of
the game engine)

— Isolate game code from hardware

® ex: controller, graphics, sound
® Allows designers to concentrate on game
— Common functionality needed across game

® Serialization, network communication,
pathfinding, collision detection, discrete
event simulator (timeline)

WP

Based on Chapter 3.1, /ntroduction to Game Development

g

Programming Areas - Tools

Most involve content creation

- Level editors, particle effect editors, sound editors
Some to automate repetitive tasks (ex: convert
content to game format)

- These usually have no GUI

® Sometimes written as plug-ins for off-the-shelf
tools

- EX: extensions to Maya or 3dStudio or Photoshop

- If no such extension available, build from scratch

Some for level design and game balance

WP

Based on Chapter 3.1, Introduction to Game Development

Programming Team Organization

® Programmers often specialize
- Graphics, networking, Al

® May be generalists, know something about
everything
- Often critical for “glue” to hold specialists together
- Make great lead programmers

® More than 3 or 4, need some organization

— Often lead programmer, much time devoted to
management

0 ® If more than 10 programmers, will be several leads
(graphics lead, Al lead, etc.)

WP

I Based on Chapter 3.1, /ntroduction to Game Development

Software Methodologies

® Code and Fix

® Waterfall

® Iterative

® Agile

® (Then, some common practices)

(Take cs3733, Software Engineering)

£
_ e

implementation

® Reactive, no proactive

® End with bugs. 1T bugs faster than can fix, “death
spiral” and may be cancelled

® Even those that make it, must have “crunch time”

- Viewed after as badge of honor, but results in
burnout

Methodologies - Code and Fix
® Really, lack of a methodology
- And all too common
® Little or no planning, diving straight into
o
I WP!

Based on Chapter 3.1, /ntroduction to Game Development

— requirements analysis, design,
implementation, testing (validation),
integration, and maintenance

® The waterfall loops back as fixes required

® Can be brittle to changing functionality,
unexpected problems in implementation
— Requires going back to beginning

Methodologies - Waterfall
® Plan ahead
® Proceed through various planning steps
before implementation
N

WP

Based on Chapter 3.1, Introduction to Game Development

— Periods can coincide with publisher
milestones

® Allows for some planning

— Time period can have design before
implementation

® Allows for some flexibility

— Can adjust (to new technical challenges or
producer demands)

Methodologies - lterative
® Develop for a period of time (1-2 months),
get working game, add features
o
I WP

Based on Chapter 3.1, /ntroduction to Game Development

Methodologies - Agile
® Admit things will change, avoid looking too far in
the future
® Value simplicity and the ability to change
® Develop for a period of time (1-4 weeks)
- Each does not have enough features to release, but
could be “done” and released

® Re-establish priorities
- Can scale, add new features, adjust

[
. .
I []

Feature “real-time” communication, often face-to-
face over documents (writing!)

- Locate people (programmers and designers)
together in a “bullpen”

Relatively new for game development
Big challenge is hard to convince publishers

WP

Based on Chapter 3.1, Introduction to Game Development

Common Practices - Version Control

® Database containing files and past history
of them

® Central location for all code

® Allows team to work on related files
without overwriting each other’'s work

® History preserved to track down errors

® Branching and merging for platform
@ specific parts

WP

I Based on Chapter 3.1, /ntroduction to Game Development

Common Practices - Quality (1 of 2)

® (Code reviews - walk through code by other
programmer(s)
- Formal or informal
- “Two eyes are better than one”
- Value is that the programmer is aware that others
will read
® Asserts
- Force program to crash to help debugging

® Ex: Check condition is true at top of code, say pointer
not NULL before following

- Removed during release

£
_ e

Based on Chapter 3.1, Introduction to Game Development

- Verify before assembling

Common Practices - Quality (2 of 2)
® Unit tests
- Low level test of part of game (Ex: see if physics computations
correct)
- Tough to wait until very end and see if bug
- Often automated, computer runs through combinations
® Acceptance tests

- Verify high-level functionality working correctly (Ex: see if
levels load correctly)

® Note, above are programming tests (ie- code, technical). Still
turned over to testers that track bugs, do gameplay testing.

® Bug database
-~ Document and track bugs
- Can be from programmers, publishers, customers
- Classify by severity
- Keeps bugs from falling through cracks
- Helps see how game is progressing

WP

Based on Chapter 3.1, /ntroduction to Game Development

— Switch after fixed time
® Results:
— Fewer breaks
-~ More enjoyable, higher morale
— Team-cohesion
— Collective of ownership

Common Practices - Pair (or “Peer”)
Programming
® Two programmers at one workstation
® One codes and tests, other thinks
H
] w-

http://en.wikipedia.org/wiki/Pair_programming

TN T PR =

Outline

® Teams and Processes (done)
® Debugging (next)
® Select Languages

® Misc (as time allows)

- Al
— Multiplayer

WP

g

Debugging Introduction

Debugging is methodical process for removing
mistakes In program

So important, whole set of tools to help. Called
“debuggers”

— Trace code, print values, profile

- New Integrated Development Environments (1DESs)
(such as Game Maker) have it built in

But debugging still frustrating

— Beginners not know how to proceed
- Even advanced can get “stuck”
Don't know how long takes to find
- Variance can be high

What are some tips? What method can be
applied?

Based on Chapter 3.5, Introduction to Game Development

WP

Sub-Outline

® 5-step debugging process
® Prevention

® Game Maker specifics

® Debugging tips

WP

Step 1: Reproduce the Problem
Consistently

® Find case where always occurs

— “Sometimes game crashes after kill boss”
doesn’'t help much

® Identify steps to get to bug

- Ex: start single player, room 2, jump to top
platform, attack left, ..

— Produces systematic way to reproduce

I L NS N I e TN T PR =

WP

10

that handles projectile creation and shooting?
® And beware that some clues are false
- Ex: if bug follows explosion may think they are
related, but may be from something else
® Don't spend too long - get in and observe

- Ex: crash when shooting arrow. See reference
pointer from arrow to unit that shot arrow should
get experience points, but it is NULL

- That's the bug, but why is it NULL?

Step 2: Collect Clues
® Collect clues as to bug
- Clues suggest where problem might be
- Ex: if crash using projectile, what about that code
o
I WP!

Step 3: Pinpoint Error

1) Propose a hypothesis and prove or disprove

- Ex: suppose arrow pointer corrupted during flight. Add
code to print out values of arrow in air. But equals same
value that crashes. Hypothesis iswrong. But now have
new clue.

- Ex: suppose unit deleted before experience points added.
Print out values of all in camp before fire and all deleted.
Yep, that's it

Or 2), divide-anad-conquer method (note, can use in
conjunction with hypothesis test above, too)

- Sherlock Holmes: “when you have eliminated the
impossible, whatever remains, however improbably, must
be the truth”

- Setting breakpoints, look at all values, until discover bug

- The “divide” part means break it into smaller sections

® Ex: if crash, put breakpoint %2 way. Is it before or after?
Repeat.

- Look for anomalies, NULL or NAN values WPL

I L NS N I e

11

® ldeally, want original coder to fix.

- If not possible, at least try to talk with original
coder for insights.

® Consider other similar cases, even if not yet
reported

- Ex: other projectiles may cause same problem as
arrows did

Step 4: Repair the Problem
® Propose solution. Exact solution depends upon
stage of problem.
- Ex: late in code cannot change data structures. Too
many other parts use.
- Worry about “ripple” effects.
o

WP

® So, test that solution repairs bug
— Best by independent tester

® Test if other bugs introduced (beware

Step 5: Test Solution

® Obvious, but can be overlooked if
programmer is sure they have fix (but
programmer can be wrong!)

“ripple” effect)

H

WP

TN T PR =

Debugging Prevention

Use consistent style, variable names

Indent code, use comments
Always initialize variables when declared
Avoid hard-coded (magic numbers) — makes brittle
Add infrastructure, tools to assist

- Alter game variables on fly (speed up)

- Visual diagnostics (maybe on avatars)

- Log data (events, units, code, time stamps)
® Avoid identical code - harder to fix if bug found

- Use a script

® Verify coverage (test all code) when testing

WP

g

Game Maker - Print Messages

® Display a Message

— object - main2 - info
® Or, in code

- show_message(‘Executed this code’)

- show_message(‘num:’ + string(number_here))
® Beware if done every step!

— Save code ahead of time

WP

13

B [=]X]

Game Maker - Debug Mode
@ Game Maker 6.1: <new game>
File Edit Add Scripts Run Window Help
0A3H P> @9 s T ZI@0 @fE @ o
() Sprites n
) Sounds
() Backgrounds !
() Paths
() Scripts
{3 Fonts
) Time Lines
() Dbjects
=) Rooms
|i] Game Infomation
4] Global Game Settings
s

>

® Ex: 1945
- obj_plane.x
- obj_plane.can_shoot

Save/load

#Debug Inf... |- | | [3

Run Watch Tools

Pl 8@ 4+ O XD

Espressin |Walue |

27 fos 7 inst mouse id:

Look at instances, global
variables, local variables

Execute code
Set speed

WP

Like show_message

L
but in debug mode only
- Note, doesn't pause
In code
- show_debug_message
(‘Executed this code")
Need to run in debug
mode
Debug Information
|

- Tools
- Show Messages

@ Messages

Game Maker - Print Debug Messages

E3

Sent data

Sent data

Sent data

Sent data

Sent data

Sent data

Sent data

Sent data

Sent data

Client cresting connection...

WP

14

Game Maker - Log Messages

® Write messages to file
® Example:

- At beginning (maybe create log object)

® global.log_name = “logfile*;
global.fid = file_text_open_write(global.log_name);

- Then, where needed:
® file_text write_string(global.fid,”"Debug message here”) ;
- Close when done (object - event other - game end):
® file_text close(global.fid)
® More file operations at:

- Note: files also useful for save/load game, etc.

WP

I L NS N I e TN T PR =

Game Maker - Script/Code Syntax

B Script Properties Q@ﬁ

v Y| ¥ DB O L =P & Name | sciptd

{

®x = 1;

while (x < 10) {
x=xt+1l;

}
}

57 1 INS ERROR at line 5 pos 10: Assignment operator expectsd,

WP

15

Game Maker - Error Messages (1 of 2)

Error ﬁ

ERRCR. in

action number 1

of Create Event

for object obiectD:

Error in code at line 9

if (global.whoops == 1) {

at position 13: Unknown variable whoops

[Aboart H Ignore]

Pay attention!
Refers to:
-Object
-Event

-Line number
-Variable name

® Help pinpoint problem

- Refer to object and method and offending code

WP

I L NS N I e TN T PR =

Game Maker - Error Messages (2 of 2)

“IGlobal Game Settings

Graphics | Resohiion | Dther | Loading | Constants | Include | Efors | Infa

Display emor messages
[J/ite enor messages to file game_erors log
] &bort on all enor messages

[Treat uninitialized variables as value 0

7o

® Can write messages to
log file
® Can ignore messages

- Use “error_last” and
“error_occurred” for
custom handling

- Typically, use only in
release

WP

16

TN T PR =

Debugging Tips (1 of 3)

Fix one thing at a time - don't try to fix multiple
problems

Change one thing at a time - tests hypothesis.
Change back if doesn't fix problem.

Start with simpler case that works - then add
more complex code, one thing at a time
Question your assumptions - don't even assume
simple stuff works, or “mature” products

- Ex: libraries and tutorials can have bugs

Minimize interactions - systems can interfere,
make slower so isolate the bug to avoid
complications

WP

I L NS N I e

Debugging Tips (2 of 3)

Minimize randomness -

- EXx: can be caused by random seed or player input.
Fix input (script player) so reproducible

Break complex calculations into steps - may be

equation that is at fault or “cast” badly

Check boundary conditions - classic “off by one”

for loops, etc.

Use debugger - breakpoints, memory watches,

stack ...

Check code recently changed - if bug appears, may
be in latest code (not even yours!)

WP

17

Debugging Tips (3 of 3)
® Take a break - too close, can't see it.
Remove to provide fresh prospective
® Explain bug to someone else - helps retrace
steps, and others provide alternate
hypotheses
® Debug with partner - provides new
techniques

-~ Same advantage with code reviews, peer

programming

- . Get outside help - tech support for
I consoles, Web examples, libraries, ...

WP

Tough Debugging Scenarios and
Patterns (1 of 2)
® Bug in Release but not in Debug
- Often in initialized code
- Or in optimized code
® Turn on optimizations one-by-one
® Bug in Hardware but not in Dev Kit
- Usually dev kit has extra memory (for tracing, etc.).
Suggest memory problem (pointers), stack overflow,
not checking memory allocation
® Bug Disappears when Changing Something
Innocuous
- Likely timing problem (race condition) or memory
N problem
- Even if looks like gone, probably just moved. So
I keep looking

WP

Based on Chapter 3.5, Introduction to Game Development

Tough Debugging Scenarios and
Patterns (2 of 2)
® Truly Intermittent Problems
- Maybe best you can do is grab all data values (and
stack, etc) and look at (“Send Error Report”)
® Unexplainable Behavior
- Ex: values change without touching. Usually memory
problem. Could be from supporting system. Retry,
rebuild, reboot, re-install.
® Bug in Someone Else’s Code
- “No it is not”. Be persistent with own code first.
- It's not in hardware. (Ok, very, very rarely, but
expect it not to be) Download latest firmware,
n drivers
- If really is, best bet is to help isolate to speed
I them in fixing it.

Based on Chapter 3.5, /ntroduction to Game Development WPL
Outline
® Teams and Processes (done)
® Debugging (done)
® Select Languages (next)
® Misc (as time allows)
- Al
— Multiplayer
N
I WP

19

5

C++ (1 of 3)

Mid-late 1990's, C was language of choice
Since then, C++ language of choice for games
- First commercial release in 1985 (AT&T)
® Here, list pros (+) and cons (-)
® (Take cs2102 OO Design Concepts or cs4233 OOAD)
+ C Heritage
- Learning curve easier for those that know C
- Compilers wicked fast
+ Performance

- Used to be most important, but less so (but still for core
parts)

- Maps closely to hardware (can “guess” what assembly
instructions will be)

- Can not use features to avoid cost, if want (ie- virtual
function have extra step but don't have to use)

- Memory management controlled by user

WP

Based on Chapter 3.2, Introduction to Game Development

g

C++ (2 of 3)

+ High-level

- Classes (objects), polymorphism, templates,
exceptions

— Especially important as code-bases enlarge
- Strongly-typed (helps reduce errors)
® ex: declare before use, and const
+ Libraries
- C++ middleware readily available

® OpenGL, DirectX, Standard Template Library
(containers, like “vectors”, and algorithms, like “sort™)

WP

Based on Chapter 3.2, Introduction to Game Development

20

5

C++ (3 of 3)

- Too Low-level
- Still force programmer to deal with low-level issues
® ex: memory management, pointers
- Too complicated

- Years of expertise required to master (other languages
seek to overcome, like Java and C#)

- Lacking features
- No built-in way to look at object instances
- No built-in way to serialize

- Forces programmer to build such functionality (or learn
custom or 3™ party library)

- Slow iterations
- Code change can take a looong time as can compile
- Brittle, hard to try new things

WP

Based on Chapter 3.2, Introduction to Game Development

g

C++ (Summary)

® When to use?
- Any code where performance is crucial

® Used to be all, now game engine such as
graphics and Al

® Game-specific code often not C++
- Legacy code base, expertise
— When also use middle-ware libraries in C++
® When not to use?
— Tool building (GUI's tough)
— High-level game tasks (technical designers)

WP

Based on Chapter 3.2, Introduction to Game Development

21

5

Java (1 of 3)

® Java popular, but only recently so for games
- Invented in 1990 by Sun Microsystems
+ Concepts from C++ (objects, classes)
- Powerful abstractions
+ Cleaner language
- Memory management built-in
- Templates not as messy
- Object functions, such as virtualization
+ Code portability (JVM)
(Hey, draw picture)
+ Libraries with full-functionality built-in

WP

Based on Chapter 3.2, Introduction to Game Development

g

Java (2 of 3)

- Performance
- Interpreted, garbage collection, security
—- So take 4x to 10x hit

+ Can overcome with JIT compiler, Java
Native Interface (not interpreted)

- Platforms

- JVM, yeah, but not all games (most PC
games not, nor consoles)

+ Strong for browser-games, mobile

WP

Based on Chapter 3.2, Introduction to Game Development

22

:

Java (3 of 3)

® Used in:
- Downloadable/Casual games
® PopCap games
- Mummy Maze, Seven Seas, Diamond Mine
® Yahoo online games (WorldWinner)
- Poker, Blackjack

® Star Wars Galaxies uses Java (and simplified Java
for scripting language)

® You Don't Know Jack and Who Wants to be a
Millionaire all Java

WP

Based on Chapter 3.2, Introduction to Game Development

g

Scripting Languages (1 of 3)

® Not compiled, rather interpreted
- Specify (script) a sequence of actions
® Most games rely upon some
- Trigger a few events, control cinematic
® Others games may use it lots more
- Control game logic and behavior (Game Maker has GML)
+ Ease of development
- Low-level things taken care of
- Fewer errors by programmer
- But script errors tougher, debuggers worse if custom
- Less technical programming required
® Still, most scripting done by programmers
- Iteration time faster (don't need to re-compile all code)
- Can be customized for game (ex: just Al tasks)

WP

Based on Chapter 3.2, Introduction to Game Development

23

5

Scripting Languages (2 of 3)

+ Code as an asset

- Ex: consider Peon in C++, with behavior in C++, maybe art as an
asset. Script would allow for behavior to be an asset also
® Can be easily modified, even by end-user in “mod”

- Performance
- Parsed and executed “on the fly”
® Hit could be 710x or more over C++
- Less efficient use of instructions, memory management
-Tool support
- Not as many debuggers, I1DEs
® Errors harder to catch
- Interface with rest of game
- Core in C++, must “export” interface
® Can be limiting way interact
- (Hey, draw picture)

WP

Based on Chapter 3.2, Introduction to Game Development

g

Scripting Languages (3 of 3)

® Python
- Interpreted, OO, many libraries, many tools
- Quite large (bad when memory constrained)

- Ex: Blade of Darkness, Farth and Beyond, Eve Online,
Civilization 4 (Table 3.2.1 full list)

® [ua (pronounced: Loo-ah)

- Not OO, but small (memory). Embed in other programs.
Doesn't scale well.

- Ex: Grim Fandango, Baldur's Gate, Far Cry (Table 3.2.2
full list)

® Others:
- Ruby, Perl, JavaScript
- Custom: GML, QuakeC, UnrealScript
® Implementing own tough, often performs poorly so careful!

WP

Based on Chapter 3.2, Introduction to Game Development

24

language (still, has ActionScript)
- “Flash” refers authoring environment, the player, or the
application files
- Released 1997, popular with Browser bundles by 2000
® Advantages

- Wide audience (nearly all platforms have Flash player)
- Easy deployment (embed in Web page)
- Rapid development (small learning curve, for both artists

and programmers)

® Disadvantages
- 3D games

- Performance (interpreted, etc.)

Macromedia Flash (1 of 2)
® More of a platform and IDE (ala Game Maker) than a
o

Based on Chapter 3.3, /ntroduction to Game Development

Flash (2 of 2)

® Timeline Based
- Frames and Frame rate (like animations)

- Programmers indicate when (time) event occurs (can
occur across many frames)

® Vector Engine
- Lines, vertices, circles

- Can be scaled to any size, still looks crisp
® Scripting '
- ActionScript similar to JavaScript (

- Classes (as of Flash v2.0)
- Backend connectivity (load other Movies, URLS)

. i ¥ Timeline
Macromedia ~ TR B
) 7 Ol e
[]

Based on Chapter 3.3, Introduction to Game Development

25

TN T PR =

Outline
® Teams and Processes (done)
® Select Languages (done)
® Debugging (done)
® Misc (as time allows)
- Al (next)

— Multiplayer

WP

g

Introduction to Al

® Opponents that are challenging, or allies
that are helpful

- Unit that is credited with acting on own
® Human-level intelligence too hard

-~ But under narrow circumstances can do
pretty well (ex: chess and Deep Blue)

® Artificial Intelligence (around in CS for
some time)

WP

Based on Chapter 5.3, Introduction to Game Development

26

5

Al for CS different than Al for Games

® Must be smart, but purposely flawed
- Loose in a fun, challenging way
® No unintended weaknesses
- No “golden path” to defeat
- Must not look dumb
Must perform in real time (CPU)
Configurable by designers
- Not hard coded by programmer
“Amount” and type of Al for game can vary

- RTS needs global strategy, FPS needs modeling of
individual units at “footstep” level

—~ RTS most demanding: 3 full-time Al programmers
- Puzzle, street fighting: 1 part-time Al programmer

Based on Chapter 5.3, /ntroduction to G Devel t WPL
Al for Games - Mini Outline
® Introduction (done)
® Agents (next)
® Finite State Machines
® Common Al Techniques
® Promising Al Techniques
N
] we

27

5

Game Agents (1 of 2)

® Most Al focuses around game agent

- think of agent as NPC, enemy, ally or neutral
® Loops through: sense-think-act cycle

- Acting is event specific, so talk about sense+think
® Sensing

- Gather current world state: barriers, opponents,
objects

- Needs limitations : avoid “cheating” by looking at
game data

- Typically, same constraints as player (vision, hearing
range)

® Often done simply by distance direction (not
computed as per actual vision)

- Model communication (data to other agents) and
reaction times (can build in delay)

WP

Based on Chapter 5.3, /ntroduction to Game Development

g

Game Agents (2 of 2)

® Thinking
— Evaluate information and make decision
— As simple or elaborate as required
- Two ways:

® Precoded expert knowledge, typically hand-
crafted if-then rules + randomness to make
unpredictable

® Search algorithm for best (optimal) solution

WP

Based on Chapter 5.3, Introduction to Game Development

28

5

Game Agents - Thinking (1 of 3)

® Expert Knowledge

- finite state machines, decision trees, ... (FSM most
popular, details next)

- Appealing since simple, natural, embodies common
sense

® Ex: if you see enemy weaker than you, attack. If you
see enemy stronger, then go get help

- Often quite adequate for many Al tasks
- Trouble is, often does not scale

® Complex situations have many factors

® Add more rules, becomes brittle

WP

Based on Chapter 5.3, /ntroduction to Game Development

g

Game Agents - Thinking (2 of 3)

® Search
- Look ahead and see what move to do next

— Ex: piece on game board, pathfinding (ch
5.4)

® Machine learning
- Evaluate past actions, use for future

- Techniques show promise, but typically too
slow

- Need to learn and remember

WP

Based on Chapter 5.3, Introduction to Game Development

29

5

Game Agents - Thinking (3 of 3)

® Making agents stupid
- Many cases, easy to make agents dominate
® Ex: bot always gets head-shot

- Dumb down by giving “human” conditions, longer
reaction times, make unnecessarily vulnerable

® Agent cheating

- ldeally, don't have unfair advantage (such as more
attributes or more knowledge)

- But sometimes might to make a challenge
® Remember, that's the goal, Al lose in challenging way
- Best to let player know

Based on Chapter 5.3, /ntroduction to G Devel t WPL
Al for Games - Mini Outline
® Introduction (done)
® Agents (done)
® Finite State Machines (next)
® Common Al Techniques
® Promising Al Techniques
H
] w-

30

Finite State Machines (1 of 2)

See Enemy

No Enemy
Y N

¥

b
@% &
&+ Flee v

® Abstract model of computation
® Formally:

- Set of states

- A starting state

- An input vocabulary

- A transition function that maps inputs and the
current state to a next state

5
g

WP
Based on Chapter 5.3, /ntroduction to Game Development
Finite State Machines (2 of 2)
® Most common game Al software pattern
- Natural correspondence between states and
behaviors
- Easy to diagram
- Easy to program
- Easy to debug
- Completely general to any problem
® Problems
- Explosion of states
— Often created with ad hoc structure
WP

Based on Chapter 5.3, Introduction to Game Development

31

Finite-State Machine: Approaches

® Three approaches
— Hardcoded (switch statement)
— Scripted
— Hybrid Approach

WP

Based on Chapter 5.3, /ntroduction to Game Development

5
g

Finite-State Machine:
Hardcoded FSM

void RunLogic(int * state) {
switch(state)
{
case 0: //Wander
Wander();
if(SeeEnemy()) { *state = 1; }
break;

case 1: //Attack

Attack(Q);

if(LowOnHealth()) { *state = 2; }
if(NoEnemy(Q)) { *state = 0; }
break;

case 2: //Flee
Flee(Q;
if(NoEnemy(Q)) { *state = 0; }
break;

Based on Chapter 5.3, /ntroduction to Game Development

32

Finite-State Machine:
Problems with switch FSM

1. Code is ad hoc
- Language doesn't enforce structure
2. Transitions result from polling

- Inefficient - event-driven sometimes
better

3. Can't determine 1st time state is entered

4. Can't be edited or specified by game
designers or players

Based on Chapter 5.3, /ntroduction to Game Development

WP

5
|

Finite-State Machine:
Scripted with alternative language

AgentFSM

State(STATE_Wander)
OnUpdate
Execute(Wander)
if(SeeEnemy) SetState(STATE_Attack)
OnEvent(AttackedByEnemy)
SetState(Attack)
State(STATE_Attack)
OnEnter
Execute(PrepareWeapon)
OnUpdate
Execute(Attack)
if(LowOnHealth) SetState(STATE_Flee)
if(NoEnemy) SetState(STATE_Wander)
OnExit
Execute(StoreWeapon)
State(STATE_Flee)
OnUpdate
Execute(Flee)
if(NoEnemy) SetState(STATE_Wander)

Based on Chapter 5.3, Introduction to Game Development

WP

33

TN T PR =

Finite-State Machine:
Scripting Advantages

1. Structure enforced
2. Events can be handed as well as polling
3. OnEnter and OnEXxit concept exists

4. Can be authored by game designers
— Easier learning curve than straight C/C++

WP

g

Finite-State Machine:
Scripting Disadvantages

® Not trivial to implement
® Several months of development
— Custom compiler
® With good compile-time error feedback
- Bytecode interpreter
® With good debugging hooks and support
® Scripting languages often disliked by users

- Can never approach polish and robustness of
commercial compilers/debuggers

Based on Chapter 5.3, Introduction to Game Development

WP

34

Finite-State Machine:
Hybrid Approach

® Use a class and C-style macros to approximate a scripting

language
® Allows FSM to be written completely in C++ leveraging
existing compiler/debugger
® (Capture important features/extensions
- OnEnter, OnExit
- Timers
- Handle events
- Consistent regulated structure
- Ability to log history
Modular, flexible, stack-based
- Multiple FSMs, Concurrent FSMs
® Can't be edited by designers or players

Based on Chapter 5.3, /ntroduction to Game Development

WP

5
g

Finite-State Machine:
Extensions

® Many possible extensions to basic FSM
— OnEnter, OnEXxit
— Timers
— Global state, substates
— Stack-Based (states or entire FSMs)
— Multiple concurrent FSMs
—- Messaging

Based on Chapter 5.3, Introduction to Game Development

WP

35

Al for Games - Mini Outline

® Introduction

® Agents

® Finite State Machines

® Common Al Techniques
® Promising Al Techniques

(done)
(done)
(done)
(next)

WP

® Whirlwind tour of common techniques

Based on Chapter 5.3, /ntroduction to Game Development

]
Common Game Al Techniques
® (See book chapters)
]

WP

36

