
Fall 2000 EE 578/CS 578 Prof. Christof Paar

Solutions to Homework Assignment # 6

1. (a) e = 79 = 1001111b

1) b5 = 0 squaring z = 22 mod 101 = e102 = 4
2) b4 = 0 squaring z = 42 mod 101 = e1002 = 16
3) b3 = 1 squaring z = 162 mod 101 = e10002 = 54

multiplication z = 54 � 2 mod 101 = e10012 = 7
4) b2 = 1 squaring z = 72 mod 101 = e100102 = 49

multiplication z = 49 � 2 mod 101 = e100112 = 98
5) b1 = 1 squaring z = 982 mod 101 = e1001102 = 9

multiplication z = 9 � 2 mod 101 = e1001112 = 18
6) b0 = 1 squaring z = 182 mod 101 = e10011102 = 21

multiplication z = 21 � 2 mod 101 = e10011112 = 42

(b) e = 197 = 11000101b

1) b6 = 1 squaring z = 32 mod 101 = e102 = 9
multiplication z = 9 � 3 mod 101 = e112 = 27

2) b5 = 0 squaring z = 272 mod 101 = e1102 = 22
3) b4 = 0 squaring z = 222 mod 101 = e11002 = 80
4) b3 = 0 squaring z = 802 mod 101 = e110002 = 37
5) b2 = 1 squaring z = 372 mod 101 = e1100002 = 56

multiplication z = 56 � 3 mod 101 = e1100012 = 67
6) b1 = 0 squaring z = 672 mod 101 = e11000102 = 45
7) b0 = 1 squaring z = 452 mod 101 = e110001002 = 5

multiplication z = 5 � 3 mod 101 = e110001012 = 15

2. (a) b = 3; y = 26

(b) a = 27; y = 14

3. Alice Bob

setup: Kpr = a; Kpub = b
publish b; n

1) choose random session key K
y = eKpub

(K) = Kb mod n
y
�!

2) K = dKpr(y) = ya mod n

Alice completely determines the choice of the session key K.

Note that in practice K might be much longer than needed in a private{key algorithm.
E.g., K may have 1024 bits but only 56 actual key bits are needed. In this case just use
the 56 MSB (or LSB). Often, it is safe practice to apply a cryptographic hash function
�rst to K and then take the MSB or LSB bits.

1

4. Idea: Both sides choose a secret key and distribute it to the other party. Both parties
combine the two secret keys then form one joint session key.

Alice Bob

KprA = aA KprB = aB
KpubA = bA; nA KpubB = bB; nB

1) choose random KA choose random KB

yA = eKpubB
(KA) = KbB

A mod nB yB = eKpubA
(KB) = KbA

B mod nA
yA
�!
yB
 �

2) KB = dKprA
(yB) = yaAB mod nA KA = dKprB

(yA) = yaBA mod nB
3) Combine KA; KB, e.g. by

KSES = KA �KB KSES = KA �KB

Note that there are other combining functions in step 3) than bit wise XOR, e.g.,
multiplication modulo n. Another possibility, which is cryptographically probably the
safest, is to feed both KA and KB to a hash function and use the output of it as the
session key.

5. (a) A message consists of, let's say, m pieces of cipher-text y0; y1; : : : ; ym�1. However,
the plain-text space is restricted to 26 possible values and the cipher-text space
too. That means we only have to test 26 possible plain-text letters for each
cipher-text letter:

test: yi
?
= jb mod n; j = 0; 1; : : : ; 25

(b) VANILLA

(c) The attack can be prevented if we arti�cially enlarge the clear-text with random
bits. For instance, in this example, the �rst 5 bits are reserved for the actual
letter and the other 1019 bits would be random. The receiver simply ignores
these random bits after decryption. Such padding with random numbers is part
of many RSA standards. In practice, however, the padding is usually much shorter
than the message, e.g., 100 random padding bits and 924 message bits.

2

6. (a) RSA encryption and decryption operation: exponentiation. For simplicity we
assume k � k � 1 in this problem.

Number of multiplications (and squarings) for one exponentiation with k{bit ex-
ponent:

#
 = 1:5 � k

complexity of one multiplication:

t
 = c � k2

) complexity for exponentiation:

tk = #
 �t
 = 1:5 � c � k3

t1024
t512

=
1:5 � c � (2k)3

1:5 � c � k3
= 8

) RSA with 1024 bits is eight times as slow as RSA with 512 bits.

(b) Karatsuba algorithm:
t0

= c � klog2 3

t0k = 1:5 � k � c � klog2 3 = 1:5 � c � k1+log
2
3

t1024
t512

=
1:5 � c � (2k)1+log

2
3

1:5 � c � k1+log
2
3

= 21+log
2
3 = 2 � 2log2 3 = 2 � 3 = 6

) RSA with 1024 bits is only six times slower than RSA with 1024 bits if the
Karatsuba algorithm is used for multiplication.

7. The basic idea is to represent the exponent in a radix 2k representation. That means
we group k bits of the exponent together. The �rst step of the algorithm is to pre-
compute a look-up table with the values A0 = 1, A1 = A, A2, : : :, A2k�1. Note that
the exponents of the look-up table values represent all possible bit patterns of length
k.

After the look-up table has been computed, the two elementary operations in the
algorithm are now:

� Shift intermediate exponent by k positions to the left by performing k subsequent
squarings (Recall: The standard s-a-m algorithm shifts the exponent only by one
position by performing one squaring per iteration.)

3

� The exponent has now k trailing zeros at the rightmost bit positions. Fill in the
required bit pattern for the exponent by multiplying the corresponding value from
the look-up table with the intermediate result.

This main loop is only performed l=k times, where l+1 is the bit length of the exponent.
Hence, there are only l=k multiplications being performed in the main loop.

An exact description of the algorithm, which is often referred to as k-ary exponentia-

tion, is given below1. Note that the bit length of the exponent in this description is t k
bits.

The complexity of the algorithm for an l + 1 bit exponent is 2k � 3 multiplications in
the precomputation phase, and about l� 1 squarings and l(2k � 1)=2k multiplications
in the main loop.

1The k-ary exponentiation description was taken from Menezes, van Oorschot, Vanstone: Handbook of

Applied Cryptography, CRC Press, 1997.

4

