
Revised version of Stochastic Models, 13, #1 39−66 (1997).

THE COUPON-COLLECTOR PROBLEM REVISITED — A SURVEY OF

ENGINEERING PROBLEMS AND COMPUTATIONAL METHODS

Arnon Boneh Micha Hofri
School of Business Administration Department of Computer Science
Tel-Aviv University M/S 132 Rice University
Ramat Aviv, Tel-Aviv, Israel 6100 Main St. Houston, TX 77005-1892
boneh@techunix.technion.ac.il hofri@cs.rice.edu

ABSTRACT

A standard combinatorial problem is to estimate the number (T ) of coupons, drawn at
random, needed to complete a collection of all possible m types. Generalizations of
this problem have found many engineering applications. The usefulness of the model
is hampered by the difficulties in obtaining numerical results for moments or distribu-
tions. We show two computational paradigms that are well suited for this type of
problems: one, following Flajolet et al. [21], is the calculus of generating functions
over regular languages. We use it to provide relatively efficient answers to several
questions about the sampling process – we show it is possible to compute arbitrarily
accurate approximations for quantities such as E[T ], in a time which is linear in m, for
any type distribution, while an exponential time is required for exact calculation. It
also leads to a proof of a long-standing folk-theorem, concerning the extremality of
uniform reference probabilities. The second method is a generalization of the Poisson
transform [25], which we use to discuss statistical estimation procedures.

Ke y words: coupon collector, engineering applications, combinatorics of languages, numerical methods,
Poisson transform, prediction function.
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1. INTRODUCTION

The Coupon-Collector Problem (CCP) is defined as follows: A set of m distinct objects (coupons, items...) is
sampled with replacement by a collector. Each drawing produces the ith item with a fixed probability pi ,
independently of all past events. Several variables are defined for the sequence of trials; all depend on the
sample probability vector pp = (p1, p2, . . . , pm):
Xn(pp) — The item number (or ‘name’) sampled on the n-th drawing.
T (pp) — The number of the drawing that completes the collection.
T j(pp) — The number of drawings needed to complete a sub-collection of size j.
TC (pp) — The number of drawings to complete a specified sub-collection C.
Yn(pp) — The number of different items observed in the first n drawings.
Nk(pp, n) — The number of different items observed exactly k times during the first n trials.

Note: The verb ‘complete’ has here the meaning of ‘complete for the first time’. The traditional symbols E
and V are used to denote the expectation and variance of random variables.

The CCP has a huge literature. We indicate below the references relevant to our discussion. It is a natural
framework for many combinatorial questions (see [19] and [35]), and correspondingly numerous applica-
tions – though these rarely preserve the simplicity of the original CCP. Here are a few engineering examples
that generate CCP-like processes.

Applications of the CCP

(1) Detection of all necessary (also called ‘hard’ or non-redundant) constraints in a constrained optimization
problem.

Boneh and Golan [6] describe PREDUCE (for Probabilistic REDUCE), the implementation of a class of
algorithms for detecting such constraints, when the feasibility region is convex and of full dimension d .
Each iteration of PREDUCE consists of selecting an interior feasible point, generating from it a ray in
random direction, and recording the first constraint(s) it meets when extended. Such a constraint belongs to
the hard-constraints set. The algorithm generates rays until a stopping rule is satisfied. All the constraints
not hit by that time are assumed redundant – possibly erroneously. Each iteration corresponds to drawing
one coupon. The number of items is known, but not the probabilities pi , and they are not constant, because
the selected interior points vary over the trials. Each pi is proportional to the expected d − 1 dimensional
angle subtended by the corresponding facet, over the set of ray origins (see [43]). A direct determination of
the hard constraints set is computationally very hard.

(2) Multistart [46]. This is a component of optimization algorithms, for both constrained and unconstrained
environments with multiple local optima. It uses a deterministic algorithm, which, given an initial point,
finds a local optimum of the objective function (the determinism means that repeating the starting point leads
to the same local optimum). The algorithm thus partitions the search space into attraction regions, one for
each local optimum of the objective function. If the initial point is chosen at random, the (unknown)
probability of hitting a specific local optimum is proportional to the size of its attraction region. Here, in
addition to the CCP-like question of stopping times for the sampling of initial points, one asks about the
likelihood of obtaining a higher-valued local optimum.

(3) Determining the convex closure of a set of points S ∈Rn.
This problem appears to be related to PREDUCE, but behaves quite differently. To determine the subset of S
that spans the closure we generate random n − 1-dimensional hyperplanes and compute the distances of all
the points of S from each. The largest (absolute) values—one, if they are all of the same sign, or two
otherwise—belong to points that are in the spanning subset. If there are closure hyperplanes that contain
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more than n − 1 points, some of these points will never be “discovered,” although they belong to the
spanning set (visualize this for n = 2 with triplets of collinear points: the intermediate ones have zero
probability of being the farthest from any random line).

(4) The fault-detection (FD) problem in combinatorial circuits.
A combinatorial circuit can be viewed as a black box with two sets of pins: one for input and one for output.
Each pin carries one bit (0 or 1) at any specified time. Loading the input pins with a bit configuration
produces an output vector on the output set – which should agree with the specifications of the circuit.
However, circuits fail sometimes. The standard fault model, ‘‘stuck at’’ [18], assumes the following:
(a) The only possible faults are of lines in the circuit that are stuck (at 0 or 1) independently of the input

vector.
(b) Faults are rare events; the probability of having more than one fault at any one time—assuming no

previous faults—is negligible. (This assumption is used to bound the duration of the test).
(c) Faults occur as independent events.

Furthermore, we assume that a list of all possible faults is available to the test designer.
A possible way to detect a fault is to find that an input vector produced an output which is in error by at

least one bit. Correct output may be produced (for certain input vectors) by a faulty circuit. The FD
problem consists of constructing a minimal list of input vectors—since in critical applications the test is
performed frequently—which detect all the entries in the fault-list.

One approach to the FD problem is to select random input vectors, determine the faults detected by each
input, and continue until all faults are ‘covered.’ Let n be the size of the input-pins set. If all n-long input
vectors are generated equi-probably, then pi , the probability of detecting the i-th fault, is 2−n × #(of input
vectors producing wrong output when fault i is present). Clearly the search for a covering set is CCP-like:
input vectors ‘draw’ faults at random. However, most vectors detect more than one fault, possibly hundreds.
This may be represented within the CCP formalism either by saying that Σ pi > 1, or by viewing each vector
as corresponding to a batch of drawings of a random size. The distribution of the batch size can be estimated
well by the designer. Further details may be found in [3] and [8].

(5) Testing biological cultures for contamination.
The last example is from Gail et al. [22], to which we refer the reader for the relevant biology. It differs
from the other examples in that both the probability vector pp and m are known. The test compares the
likelihood, which they compute, that no repetition occurs in n drawings, with experiments on potentially
contaminated cells. While the same mathematics is used there as we do below, this is more similar to
another classic – the ‘birthday problem’.

Outline of the paper

Section 2 surveys the main results in the literature and comments on the numerical difficulties which have
stymied applications of the CCP model.

Section 3 describes our first computational device—operations on regular languages—and shows its
effectiveness in producing efficiently computable expressions for moments of variables associated with the
CCP. It also leads to a proof that among all possible pp, the uniform vector produces the shortest expected
collection completion times.

Section 4 describes numerical examples, and the computational techniques we used. Then we discuss
statistical problems that arise when CCP-like processes are considered.

In Section 5 we introduce our second computational method, the Poisson transform, which leads to a new
form of the prediction function.

2. RELATED WORK
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Many texts on probability use the CCP as an example for elementary derivations of expectations. Feller [19]
also considers the waiting times between successive increases of the ‘‘observed set.’’ David and Barton
consider in [16] the CCP within their discussion of occupancy problems, and compute the time required to fill
a giv en number of boxes, remarking that the ‘moments are not tractable’ (though it was not computational
complexity that seems to have concerned them, but rather the lack of closed forms for the results). Most of
the treatments (we know) consider the expected time to complete the collection, E[T (pp)], and its properties,
usually in the classical case of equally likely (EL) coupons.

The best-known expression for E[T (pp)] is probably

(1)

E[T ( pp)] =
m

i=1
Σ 1

pi
−

1≤ i< j≤m
Σ 1

pi + p j
+

1≤ i< j< k≤ m
Σ 1

pi + p j + pk
− + . . .

=
m

r=1
Σ (−1)r+1

1≤ i1<...< ir≤ m
Σ 1

pi1
+ pi2

+ . . . + pir
,

easily proved [13] with the inclusion-exclusion principle and the relation E[T ( pp)] = Σn≥0Pr[T (pp) > n]. The
earliest source we found for it is [16], which provides some distributional results as well.

For the EL case, when pp = ee/m, with ee = (1, 1, . . . , 1), it is possible to obtain compact expressions also for
higher moments, since T (ee/m) is the sum of independent geometrically distributed random variables, with
parameters that depend on their position in the sum (but not on the particular items that had been sampled):

(2)E[T ( ee
m )] = mHm, V [T ( ee

m )] = m2 H (2)
m−1 − mHm−1, E[zT (ee/m)] = z

m−1

j=1
Π (m − j)z

m − jz ,

where Hm is the mth Harmonic number, and H (2)
m is the mth second-order Harmonic number, giv en by

Σ m
i=11/i2; these converge rapidly to ζ (2) = π 2/6. In this egalitarian case even the PMF has a concise

representation [28, p.129], in terms of the Stirling numbers of the second kind:

(3)Pr [T (ee/m) = n] = m!
mn 〈 n − 1

m − 1〉.

The expression for E[T ( pp)] above is a sum of a large number of terms with alternating signs, which is
difficult to handle numerically; most approximation schemes are defeated in such circumstances as well.
Other expressions were developed to overcome this difficulty, but they are even more complex.

A. Boneh obtains in [7] an expression for E[T (pp)] by considering all possible orders in which the
coupons may be obtained, and conditioning on the permutation. He finds

(4)E[T ( pp)] =
ii ∈ S(Nm)

Σ P( ii )E( ii ),

where Nm is the set of the first m natural numbers and S(Nm) is the symmetric group of permutations of Nm.
For any permutation ii = (i1, . . . , im) he writes

(5)P( ii ) =

m

r=1
Π pr

m

j=1
Π(

m

k= j
Σ pik)

, E( ii ) =
m−1

r=0
Σ 1

1 −
r

k=1
Σ pik

,

for the probability of obtaining the collection in the order ii and the expected time to complete it in this
order, respectively. We obtain bounds on E[T (pp)] by computing E(⋅) for two extreme cases: the largest,
when items are sampled in the most likely order (of decreasing probabilities), and in the reverse order, that
produces the shortest possible expected completion time. The mean must be between these two, but the gap
may be substantial and we are hard put to produce from it a tight estimate (in particular, the gap increases
with m).



Boneh, Hofri: Coupon Collecting Revisited... 5

A recursive scheme of similar complexity is shown in [13]: let E{i1, i2,..., ik} denote the expected time to
observe the entire sub-collection {i1, i2, . . . , ik}, then

(6)E[T (pp)] = ENm
,

and one proceeds recursively, from E{∅} = 0:

(7)E{i1, i2,..., ik} = 1
pi1

+ . . . + pik
+

k

r=1
Σ

pir

pi1
+ . . . + pik

E{i1,i2,...,ik} − {ir}.

Brayton obtains in [11] the expected time to complete k collections (equation (34) below), and the
corresponding variance. He uses a different notation to express asymptotic properties: the {pi} are given by
{F(i/n) − F((i − 1)/n)}, and the distribution F(⋅) is assumed to have a nonvanishing density on [0, 1], with
finite variation, and to achieve its minimal value at a finite number of isolated points. Naturally, the
asymptotics turn out to hinge on this ‘‘minimum set.’’

Caron et al. [13] report on an effort to show the intuitive idea that E[T (pp)] is minimized, over all
probability vectors, in the EL case. This conjecture has been long part of the folklore of the CCP [1]. The
result is interesting, since it gives a natural (and easily computable) yardstick by which to judge the relative
difficulty of such problems. It is quite easy to show that ee/m is a stationary point of E[T (pp)]; the authors
there also show—through equation (1)—that ee/m is a strong local minimum. But the proof that it is a global
minimum remained elusive. The difficulty was that the common expressions for E[T (pp)] are not convex in
the components of pp. While it appears that E[T (pp)] is convex on the sheet Σ pi = 1, there is no simple way
to show this, uniformly for all m (in [13] this is shown for m ≤ 6 only).

Meilijson et al. develop in [36] expressions for the first two moments of the number of k-hits (defined
below) and the number of drawings involved in them (these are the number of matches and of matched
people, in the ‘birthday problem’). They only consider the EL case and develop their formulas directly.

The articles [17] and [40], and especially the survey [12], consider statistical questions concerning the
coupon collecting process, which we treat in Section 5.

The most detailed treatment of CCP-related questions is [44]. The authors’ starting point is not any
specific problem, but rather the solution: they consider a few parametrized families of Dirichlet integrals of
type 2. They then show that the solutions of a very rich collection of sampling stopping-time problems can
be expressed in terms of these integrals; in particular, that several CCP-related quantities fall squarely in that
domain. [44] also contains numerous tables, and recurrence relations that can reduce higher-dimensional
problems to the range of the tables. All the numerical data are geared to problems in which the pi have at
most two different values. In order to treat non-uniform sampling probability vectors, the authors provide
Taylor expansions of the basic integrals at the EL point. Using those does not appear easy. The approach of
the next section indicates that it should be possible to convert the above integrals directly to one-dimensional
ones (possibly a sum of such integrals) for any probability vector.

Further comments on previous work appear below, when we discuss specific issues.

Computational Difficulty

We hav e commented on the huge computational effort required to obtain the expected value E[T (pp)]. It
appears that except for the EL case, only rarely—and then, for rather small m—any expectations or
probabilities have been explicitly calculated. We show below that asymptotics can sometimes be used, when
pp is characterized by one or two parameters, but in general the components of pp do not satisfy any
convenient relation and no useful asymptotic results exist (see the discussion of [10] in Section 4). The
situation seemed so bad that a researcher in an area that applies the CCP complained that once m exceeds 30
or so, it is immaterial whether one knows the probabilities or not – since nothing can be computed with them
anyway. In the next section we show that this is definitely not the case: we can routinely compute
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expectations and probabilities for thousands of items and more; the effort (for most of the computations) is
roughly linear in m, with reasonable constants, independently of the probability values.

3. GENERATING FUNCTIONS FOR LANGUAGES

Flajolet et al. [21] present a method to compute probabilities for variables defined over sequences of
independent samples from a finite population. They show it leads to a computationally feasible expression
for the expected duration of the coupon collector activity. The same approach was briefly mentioned earlier
by Comtet [15].

We outline of the method, and compute a few CCP-related quantities. In this section we provide analytic
expressions, and take up computational considerations in Section 4.

Strings Over a Finite Alphabet

Let A = {a1, . . . , am} be an alphabet, and each letter a j is associated with the probability p j . A string of
letters from A is a word. The set of all finite words over A is denoted by A∗. A subset of A∗ is called a
language. Each word w has two types of weights: an additive weight − its size (the number of its letters),
|w|, and a multiplicative weight − its probability, defined by: π (w) ≡ Π|w|

j=1 pw j
. We define for a language L

the following probability generating functions (PGF):

(8)φ L(z) ≡
w ∈ L
Σ π (w)z|w|, φ̂ L(z) ≡

w ∈ L
Σ π (w) z|w|

|w|! .

The functions φ L(z) and φ̂ L(z) are called the ordinary and exponential PGFs of L, respectively. They are
related through the Laplace-Borel transform:

(9)φ L(z) =
t≥0
∫ φ̂ L(zt)e−t dt.

Remark: These are not the standard PGFs of (discrete) random variables. Let [xr ] f (x) denote the coefficient
of xr in the power series development of f (x), then [zn] φ L(z) is the probability that a random word of size
n is in the language L. This formalism does not support directly the notion of a random word of arbitrary
size.

We define three operations on languages: union, catenation and shuffling.
1. The union of languages is the usual union of sets. We call it well-defined when the sets are disjoint.
2. The catenation of two languages, L1 and L2, is a language L, written as L = L1 L2, such that each word of
L is formed by catenating a word from L2 to a word from L1, to form w = w1. w2 (. is the catenation
operator, that we often omit). The operation is well-defined iff L has the property of unique factorization.

Proposition 1: If the operations LU = L1 ∪ L2 and LC = L1 L2 are well-defined, then

(10)φ LU
(z) = φ L1

(z) + φ L2
(z), φ LC

(z) = φ L1
(z)φ L2

(z).

3. The operation of shuffling two languages is defined recursively as follows: Two languages are shuffled by
shuffling all their words pair-wise; two words are shuffled by merging their letters in all possible manners,
while retaining the original order in each ( is the shuffle operator):
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(11)

w ε = ε w = w, (ε is the null word.)

a. w1 b. w2 = a. (w1 b. w2) ∪ b. (a. w1 w2) a, b ∈ A, wi ∈ Li ,

L1 L2 =
w1 ∈ L1
w2 ∈ L2

∪ w1 w2.

The operation is well-defined for languages that use disjoint subsets of A – that is, different alphabets.
Proposition 2: If the operation L = L1 L2 is well-defined, then

(12)φ̂ L(z) = φ̂ L1
(z)φ̂ L2

(z).

Applications of this tool have the following format: the statement of a problem is reinterpreted as a
specification of a language H ⊆ A∗. The words of H are shown to be constructible from simple
components by union, catenation and shuffling. The building-blocks are such that their PGFs are easy to
compute directly, and propositions 1 and 2 provide the PGF of H , from which we ‘read off’ the desired
answers. Here is a construction we use below.

Define a k-hit as the occurrence of a letter k times (or more) in a word. We compute the probability that
a random word of a specified size has k-hits for exactly q distinct letters.

Let Hq,k be the desired language: it only contains words in which exactly q letters recur at least k times,
and the m − q others appear at most k − 1 times. Introduce the following notation for one-letter languages:

(13)a<k = {ε , a, a2, . . . , ak−1 } , a≥k = ak . a∗ ,

where a2 is shorthand for the word aa, etc., and a∗ is the supremum of all a<k . Then

(14)Hq,k =
I ,J
∪ (a≥k

i1
a≥k

i2
. . . a≥k

iq
) (a<k

j1
a<k

j2
. . . a<k

jm−q
) .

The union is over all the partitions of A into two sets I = {i1, . . . , iq}, J = { j1, . . . , jm−q}, I ∩ J = ∅,
I ∪ J = Nm. The exponential PGFs of the ingredients are straightforward. Let ek(z) denote the incomplete
exponential function, ek(z) = Σk

i=0zi/i!, then the needed exponential PGFs are:

(15)â≥k
i (z) =

j≥k
Σ p j

i z j

j! = ezpi − ek−1(zpi), â<k
i (z) = ek−1(zpi).

The sets I and J involve disjoint alphabets; hence, the exponential PGF of Hq,k is given by

(16)φ̂ q,k(z) =
I ,J
Σ

i ∈ I
Π (ezpi − ek−1(zpi))

j ∈ J
Π (ek−1(zp j)).

This sum has a more compact representation:

(17)φ̂ q,k(z) = [uq]
m

i=1
Π [ek−1(zpi) + u(ezpi − ek−1(zpi))].

If we are interested in probabilities of words of a specified size n, this is all that is needed. If the interest is
in the sum of these probabilities over words of any size—or in CCP formulation: of any sequence of trials—
we show below that we need the ordinary PGF, and the Laplace-Borel transform gives

(18)φ q,k(z) = [uq]
t≥0
∫

m

i=1
Π [ek−1(ztpi) + u(eztpi − ek−1(ztpi))]e−t dt.

In the EL case the summation in equation (16) is over (m
q) identical terms, yielding

(19)φ̂ q,k(z) = (m
q)(ez/m − ek−1(z/m))

q
(ek−1(z/m))

m−q
, (EL)

and similarly for the ordinary PGF. We consider now a few CCP-related calculations.
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(1) The probability of drawing coupon #i at least ri times in n trials, 1 ≤ i ≤ m

Each ri is the quota of coupon #i. The number of drawings required to obtain the quotas ri = δ npi for
δ ∈(0, 1) is called the δ -blanket time for the process [47].

The samples satisfying this requirement form a language H(pp, rr), in which each word contains the letter
ai at least ri times. Then in analogy with equation (14),

(20)H(pp, rr) = (a≥r1
1 a≥r2

2
. . . a≥rm

m ).

where the a≥ri
i are defined in equation (13). The exponential PGF of the set a≥ri

i is e pi z − eri−1(pi z), with
e−1(⋅) ≡ 0; hence

(21)φ̂ ( pp, rr ; z) =
m

i=1
Π(e pi z − eri−1(pi z)),

and the desired probability is given by

(22)P( pp, rr ; n) = n![zn]
m

i=1
Π(e pi z − eri−1(pi z)).

There is no useful explicit form for this coefficient. For moderate m and n, its numerical value may be
obtained using the Cauchy integral formula with any contour around the origin, since φ̂ (pp, rr ; z) is an entire
function.

An equivalent form is obtained in [42, p.51]. A relatively efficient numerical recursion to evaluate
P(pp, rr ; n) is dev eloped by Neuts and Carson [37].

(2) The probability of scoring k-hits for r coupons in a sample of size n

The construction is similar to the one above; since the items are not specified, we need to sum over all
possible r-out-of-m sets.

What is the probability of scoring at least r k-hits? To use equation (17), define Yn(pp, k) as the number
of k-hits in a word of size n. Then

(23)

Pr[Yn( pp, k) = j] = n![znu j]
m

i=1
Π(ek−1(pi z) + u(e pi z − ek−1( pi z)))

= [znu j]
t≥0
∫

m

i=1
Π(ek−1(pi zt) + u(e pi zt − ek−1(pi zt)))e−t dt.

The required answer is Σr≤ j ≤ mPr[Yn(pp, k) = j]. Unless r is a very small number – or similarly close to m,
there is no essentially simpler way to express this truly complex combinatorial quantity. The relative
simplicity of the EL case is probably more apparent in this case than in others (see [36]).

(3) The expected number of different coupons drawn in a sample of size n

This problem calls for the evaluation of E[Yn(pp, 1)]. It can be done by elementary considerations, but it is
instructive to use the present apparatus to recapture it. From equation (23) we have

(24)E[Yn(pp, 1)] =
n

j=1
Σ jn![znu j]

m

i=1
Π(1 + u(e pi z − 1)) ≡ n![zn] ∂

∂u
b(u, z)

u= 1
,

where b(u, z) = Πm
i=1(1 + u(e pi z − 1)). The differentiation and evaluation are routine:
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(25)

∂
∂u

b(u, z)
u=1

= b(u, z)
m

i=1
Σ e pi z − 1

1 + u(e pi z − 1) u=1

= b(1, z)
m

i=1
Σ e pi z − 1

e pi z = ez
m

i=1
Σ(1 − e−pi z).

Leading to the obvious value

(26)E[Yn( pp, 1)] = n!
m

i=1
Σ( 1

n! − (1 − pi)
n

n! ) =
m

i=1
Σ[1 − (1 − pi)

n],

We consider some properties of this result below and in Section 4.

(4) The expected time to draw a sub-collection of size j [21]

Consider the following set of equalities:

(27)E[T j(pp)] =
n≥0
Σ Pr[T j(pp) > n] =

n≥0
Σ Pr[Yn(pp, 1) < j],

which hold since the two compound events {T j(pp) > n} and {Yn( pp, 1) < j} consist of the same sequences of
trials. To use equation (23) we write

(28)
n≥0
Σ Pr[Yn( pp, 1) < j] =

n≥0
Σ

j−1

r=0
Σ Pr[Yn(pp, 1) = r] =

j−1

r=0
Σ {

n≥0
Σ Pr[Yn(pp, 1) = r]}.

Equation (23) now giv es, specialized to k = 1,

(29)E[T j(pp)] =
j−1

r=0
Σ

n≥0
Σ Pr[Yn(pp, 1) = r] =

j−1

r=0
Σ [ur ]

t≥0
∫

m

i=1
Π(1 + u(e pi t − 1))e−t dt.

The integrand is an m-degree polynomial in u, and when j = m it simplifies greatly: in this case we need the
sum of the coefficients of ur for all r except r = m, which is Πm

i=1(e pi t − 1). The sum of all the coefficients is
simply the value of the right-hand side at u = 1, and we find:

(30)E[Tm(pp)] = E[T (pp)] =
t≥0
∫ [et −

m

i=1
Π(e pi t − 1)]e−t dt =

t≥0
∫ [1 −

m

i=1
Π(1 − e−pi t)]dt.

This is a computationally efficient form for E[T (pp)]. The equality of this integral to the right-hand side of
equation (1) is immediate. Equation (30) has a particularly simple form in the EL case,

(31)E[T (ee/m)] =
t≥0
∫ [1 − (1 − e−t/m)

m]dt.

There is interest also in finding the time to ‘nearly complete’ the sampling, that is, for values of j that are
very close to m, and the same approach applies. For example, we find

(32)E[Tm− 1( pp)] =
t≥0
∫ [1 −

m

j= 1
Σ (p j + e−p j t(1 − p j))

m

i=1
i≠ j

Π(1 − e−pi t)]dt.

With some care the computation times of these quantities can be still kept essentially linear in m.

Remark: It is instructive to consider side by side the two quantities given by equations (26) and (29). Both
may be viewed as functions in the (sampling duration, number of captures) plane, but with the relation of
independent/dependent variables reversed, as shown for a special case in Fig. 1.

The engineering (and statistical) significance of the two functions is very different: The ‘‘detection
curve,’’ giv en by equation (26), shows the expected fraction of detected items as a function of the sampling
duration. The ‘‘sample duration curve,’’ computed in equation (29), gives the expected duration required to
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complete a specified fraction. Equations (30) and (32) above giv e expressions for two points on this curve;
computing each is linear in m, but obtaining the entire curve still appears infeasible when the number of
distinct probabilities is large. Note that the first curve extends to infinity (along the sample size axis), while
the second one terminates in the point (E[T (pp)], 1). Statistical inference is joined to the detection curve in
Section 5, where we discuss the prediction function. Another way to distinguish the two curves is to
consider how they compare with individual experiments. Points of the first curve represent average of
samples scattered along the ordinate, while the second one features averages of horizontal scatter.

We conjecture that the appearance of Fig. 1, where the duration curve lies entirely above the detection curve
(except for the first two points: t = 0, 1, where they coincide) is unique to the EL case, and that in all other
cases they intersect.

The next two problems generalize problem (4) in different ways.

(5) The expected time to draw k times a sub-collection of size j

When k = 1 this repeats the previous problem. For j = m, k = 2 and the EL case, this problem is known as
the ‘‘double Dixie cup problem’’ (after the product that carried the collected coupons). Holst provides an
answer for the EL case in [31], and comments on earlier derivations of that result, extending to 1960, as a rule
considering complete collections (i.e. j = m), and—except [11]—the EL case. Other references of interest
(all essentially concerned with limiting properties of E[T (ee/m)]) are [23, 33, 38 and 39].

The required expected value is obtained exactly as for Problem (4):

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

E[T (pp)]

Detected
Fraction of
Probability

Sample size

Fig. 1: Detection−temporal relationships for the EL case (m = 10)
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(33)E[T (k)
j (pp)] =

n≥0
Σ Pr[T (k)

j (pp) > n] =
n≥0
Σ Pr[Yn( pp, k) < j].

The same approach that produced equations (29) and (30) gives here

E[T (k)
j (pp)] =

j−1

r=0
Σ

n≥0
Σ Pr[Yn(pp, k) = r] =

j−1

r=0
Σ [ur ]

t≥0
∫

m

i=1
Π(1 + u(e pi t − ek−1(pi t)))e−t dt,

(34)and E[T (k)(pp)] =
t≥0
∫ [1 −

m

i=1
Π(1 − e−pi t ek−1(pi t))]dt.

Computing this is roughly of the same difficulty as that of E[T (pp)], and increases sub-linearly with k.
Equation (34) was obtained in [11] by direct appeal to the multinomial distribution of the drawings.

(6) The expected time to draw a specified sub-collection C of size |C | = j

This problem can be handled almost as problem (4), but is much more informative, as we show later. Let the
required subset be C ⊆ A. As above,

(35)E[TC ( pp)] =
n≥0
Σ Pr[TC ( pp) > n] =

n≥0
Σ Pr[Wn(C, pp) < j] =

j−1

k=0
Σ {

n≥0
Σ Pr[Wn(C, pp) = k]},

where Wn(C, pp) is the number of coupons from C observed in a sequence of n drawings. Let Hk(C) be a
language containing only words in which exactly k items of C appear. Using equations (13) and (14) it can
be written as

(36)Hk(C) =
I ⊆ C
∪ (a≥1

i1
a≥1

i2
. . . a≥1

ik
) (A − C)∗.

The union is over all I = {ai1
, . . . , aik

} ⊆ C; hence Hk(C) has the exponential PGF

(37)φ̂ k,C (z) =
I : |I |=k
Σ

i∈ I
Π (ezpi − 1)ez(1−PC ),

where PC = Σi∈C pi . Let us write C ={a(1), . . . , a( j)}. The same manipulations that led us to equation (30)
provide

(38)φ̂ k,C (z) = [uk]
j

i=1
Π[1 + u(ezp(i) − 1)]ez(1−PC ),

and for the expectation we find

(39)

E[TC ( pp)] =
j−1

k=0
Σ φ k,C (1) =

j−1

k=0
Σ

t≥0
∫ [uk]

j

i=1
Π[1 + u(etp(i) − 1)]et(1−PC )e−t dt,

=
t≥0
∫ [1 −

(i) ∈C
Π (1 − e−p(i)t)]dt,

in complete analogy with equation (30).

(7) Tail probabilities for T (pp)

We hav e obtained expressions for the distribution of T (pp): from the discussion leading to E[T (pp)] – see
equation (27) – we find for the tail probabilities of T (pp), specializing equation (23) to k = 1, that

(40)Pr[T (pp) > n] = Pr[Yn(pp, 1) < m] =
m−1

r=0
Σ n![znur ]

m

i=1
Π(1 + u(e pi z − 1)).

The same treatment that led to equation (30) then provides
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(41)Pr[T ( pp) > n] = n![zn](ez −
m

i=1
Π(e pi z − 1)) = 1 − n![zn]

m

i=1
Π(e pi z − 1).

This is a specialization of equation (22), and we discuss it further in Section 4.
Consider now another descriptor of the distribution – the variance V [T (pp)]. We use the relation

E[T 2(pp)] = Σn≥0(2n + 1)Pr[T ( pp) > n] = 2I2 + E[T (pp)]. To compute I2 we have the choice of using the
exponential PGF or the ordinary one. The first produces

(42)I2 =
n≥1
Σ nPr[T (pp) > n] =

n≥1
Σ n(1 − n![zn]

m

i=1
Π(e pi z − 1))).

The second one yields

(43)

I2 =
n≥1
Σ nPr[T (pp) > n] =

t≥0
∫

m

j=1
Σ p j t[1 −

m

i=1
i≠ j

Π(1 − e−pi t)]dt.

=
t≥0
∫

m

j=1
Σ p j t[1 − Π(t)

1 − e−p j t
]dt, Π(t) ≡

m

i=1
Π(1 − e−pi t).

Then V [T (pp)] = 2I2 + E[T (pp)](1 − E[T (pp)]). The first expression for I2 is similar to equation (1), and
there is little to recommend it. The second is numerically feasible, very similar to the integral used for
E[T (pp)]; with some care the computation time can be kept linear in m, although with higher constants.

(8) On the distribution of N1(n)

N1(n) is the number of letters that occur exactly once in a word of size n; it is used in the statistical
considerations below. The words that contribute to Pr[N1(n) = r] are similar to those we constructed in
problem (3), and we find the language and generating function

(44)H(pp, r) =
I : |I |=r
∪ [(ai1

ai2
. . . air) (A − I )≠1],

(45)φ̂ r (z) =
I : |I |=r
Σ

i∈I
Π zpi

j ∉I
Π(ezp j − zp j).

Hence

(46)Pr[N1(pp, n) = r] = n![znur ]
m

i=1
Π(ezpi + (u − 1)zpi).

In general, numerical evaluations are not simple, and unless the components of pp have an analytically
tractable form asymptotic estimates are unlikely. For the special case r = n, a recursion is shown in [22], as
well as a few ad-hoc approximations.

The expectation is straightforward either from equation (46) or elementary considerations, and equals

(47)E[N1(pp, n)] = n
m

i=1
Σ pi(1 − pi)

n−1.

A similar procedure leads to

(48)E[Nk(pp, n)] = (n
k)

m

i=1
Σ pk

i (1 − pi)
n−k .

(9) Proof of the Conjecture on the extremality of the EL case

The conjecture that E[T ( pp)] is minimal when the probability vector pp is uniform is of interest, because it
provides an easily computable lower bound when the actual probabilities are unknown. We start with
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equation (30) and denote the integrand by f (t, pp). This function is everywhere positive, and we show that it
is minimized—uniformly in t—at the probability vector ee/m. The desired result follows. The minimization
problem

(49)
pp≥0
min f (t, pp) =

pp≥0
min[1 −

m

i=1
Π(1 − e−pi t)] Subject to

m

i=1
Σ pi = 1,

is equivalent to the problem

(50)
pp≥0

max[1 − f (t, pp)] =
pp≥0

max
m

i=1
Π(1 − e−pi t) Subject to

m

i=1
Σ pi = 1.

The optimum is at some strictly positive pp > 0. Then f (t, pp) is positive, and since the logarithm function is
monotone increasing over the positive reals, the above problem is equivalent to

(51)
pp>0

max ln[1 − f (t, pp)] =
pp>0

max
m

i=1
Σ ln(1 − e−pi t) Subject to

m

i=1
Σ pi = 1.

The last problem is equivalent to searching for the saddle-point of the Lagrangian

(52)L(p, λ ,νν ) ≡
m

i=1
Σ ln(1 − e−pi t) + λ(

m

i=1
Σ pi − 1) +

m

i=1
Σ ν i pi .

For any t > 0  the Lagrangian L(p, λ ,νν ) has a stationary point at the uniform pp (with the values for λ and νν
there uniquely defined). Moreover: it is everywhere concave in pp-space (its Hessian is diagonal, with
negative elements only), hence that point is a global maximum for equation (50), and a global minimum for
E[T (pp)].

S.M. Ross has pointed out [41] that a stronger claim can be shown: T ( pp) is minimized stochastically1

when pp = ee/m. We compute Pr[T ≤ n] when pp has at least 2 unequal components, say p1 ≠ p2. Let pp′ =
(q, q, p3, . . . , pm), where q = (p1 + p2)/2. Then

Pr[T ≤ n] =
rr n
Σ Pr[T ≤ n | coupon #i is selected ri times, 3 ≤ i ≤ m] × Pr[rr n],

where rr n is the number of times the specified coupons are obtained during the first n trials. The
unconditional probability is the same for pp and pp′, and the conditional one vanishes unless all ri > 0  and
s ≡ n − Σ ri satisfies s ≥ 2. In that case it equals 1 − [p1/(p1 + p2)]s − [p2/(p1 + p2)]s with pp, and 1 − 1/2s−1

with pp′. The convexity of the function xs implies that Pr[T ≤ n] is larger with pp′, and the argument proceeds
similarly to “equalize” the rest of the components. This is equivalent to showing that Pr[T ≤ n] is a Schur-
convex function of pp [34].

Many similar questions are of operational interest and can be answered by these means. Sobel et al. [44]
bring up a few more questions that they tackle by their approach. Its computational feasibility depends on
special circumstances, such as pp having few different components. Here is an example that gives the flavor
of those questions:

Given two sets of items, C and D, what is the probability of finding r of the first before capturing k of
the second?

Improvements of the algorithm PREDUCE described in Section 1 lead to CCPs with the multiple
completion-sets criterion: Let {Ai}, 1 ≤ i ≤ r be r disjoint subsets of A. What is the number of trials
required for the elements of at least one of them to be all obtained? For such problems the preferred route is
via the Poisson transform of Section 5.

1A rv X is said to be stochastically smaller than Y when Pr [X ≤ x] ≥ Pr [Y ≤ x] for all x. This is denoted by X ≤st Y .
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4. COMPUTATIONAL ASPECTS AND NUMERICAL EXAMPLES

A major consideration in the treatment presented above is its suitability for numerical work. We describe
some computations, and remark on the significance of the numerical results. For engineering problems
modeled by the CCP the following quantities are commonly needed:
(a) The expectation of T (pp).
(b) Dispersion measures of T (pp), where tail probabilities are possibly the most useful.
(c) The tradeoffs between length of sampling and the probabilities of detecting given fractions of the

items.
(d) Practical considerations in applications where the vector pp is unknown.

(a) The expectation of T (pp)

The computational advantage of the integral in equation (30) over the sums of Section 2 is enormous: instead
of dealing with 2m oscillating terms, we integrate a bounded, smooth, everywhere-positive function. It is
true that the range of integration may be tremendous as well, but the function is smooth enough for an
integration routine with locally adaptive step-size to compute it with a few hundreds of function evaluations,
under very stringent accuracy requirements.

This convenience was already noted in [21] and was the starting point of our interest in the issue, as it
computes an ε -approximation in linear time (in m), for a problem that is inherently exponential in m. Fig. 2
shows the integrand f (t) of equation (30) for the EL case with m = 100, and the shape is typical.

The curve starts from 1 at t = 0 and decreases very slowly (its first m − 1 derivatives vanish at t = 0), has a
relatively restricted region of faster descent towards 0, where it has an inflection point, and vanishes
exponentially. The dominant term in the tail is exp(−pmint), where pmin is the smallest element in pp. This
fact was used to determine the cut-off point for the integration, tu. Requiring an absolute error on the order
of ε , tu was determined by the relation

(53)
t≥tu

∫ e−tpmin dt = 1
pmin

e−tu pmin = ε ,

or tu = − ln (pminε )/pmin. If there are r items associated with the minimal probability pmin, the cut-off point
needs to be only slightly pushed to tu = −ln (pminε /r)/pmin. We can replace the infinite range of integration
by a finite one, [0,1], with the substitution t = −ln x, and get a singular integrand for our pains. For practical
numerical work we are probably better off this way.

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

f (t)

t in units of tu

| − − − Region of descent − − − |

Fig. 2: The integrand of equation (30)

We routinely integrated along the interval (tu, 1. 5tu), to estimate the actual error. The value of ε was set
at 10−7, far smaller than is necessary in applications, and was selected to strain the integration procedures.
The integration was done with the routine quanc8 of [24], which uses 8-point Newton-Cotes integration with
locally-adaptive step size. Sample results are shown in tables 1 and 2.
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m 10 100 1000 10,000 100,000

E[T (pp)] 56.24 1856.52 41,288.83 739,709.57 11,670,512.01
m(lnm)2 53.02 2120.76 47,717.1 848,303.7 13,254,745

tu 571 17,406 281,140 4,053,471 54,629,467
# Evalu. 177 161 177 193 145

Table 1: E[T (pp)] for the Zipf distribution.

The probability vector used in table 1 is the Zipf distribution, with pi = 1/iHm. The second line
corresponds to the estimate m ln2m, shown in [10] to be an asymptotic estimate of E[T (ppZipf )]. The

estimate clearly tracks the correct values, with an overestimate that decays extremely slowly. The
computational effort is roughly linear in m (and is independent of the particular probability vector, so long as
all the probabilities are distinct). The last line reports the number of function evaluations used in the
integration. The oscillations in this number depend on the location of the region of descent of the integrand
with respect to the evaluation points selected by the integration routine; some fine-tuning is possible here but
was not deemed worthwhile.

m 10 100 1000 10,000 100,000

E[T (pp)] 68.985 6338.74 628,226.33 62,766,148.84 6,276,050,044.96
E[T (ee/m)] 29.929 518.74 7485.47 97,876.06 120,901.46

tu 1107 124,458 1. 464 × 107 1. 692 × 109 1. 923 × 1011

# Evalu. 177 225 225 209 209

Table 2: E[T (pp)] for the Linear distribution.

Table 2 presents results for a different distribution that arises in applications: the so-called Linear
distribution. There pi = 2i/m(m + 1). For comparison, the second line brings the corresponding expected
values in the EL case. This distribution is the reverse, in a way, of the Zipf distribution: there as here we have
many probabilities of very close values, but for the Zipf distribution it is the small probabilities that are
close, whereas for the linear one it is the higher values that are nearly uniform, and at the tail they are well
spaced out. The change this causes in E[T ( pp)] is dramatic: since it must be in Ω(1/pmin), it is at least
quadratic in m. In this case we can produce better asymptotics, at m(m + 1)(2π /√3 − 3) ≈
0. 6275987m(m + 1). This result was stated first in [16]. The proof consists in showing that with this pp the

integral in equation (30) can be written in the limit m → ∞ as ∫∫1
0

Σk≥ 1bk xk dx, where bk is a well-known
number-theoretic function, specifying the difference between the number of partitions of k with even number
of distinct parts, and the number of such odd-sized partitions. In [27, p.14] it is shown that bk is (−1)n when
k equals n(3n + 1)/2 for some integer n, and vanishes otherwise (essentially Euler’s pentagonal numbers
theorem). The integration is routine. The asymptotic estimate agrees with the exact value to six decimal
places already for m = 100.

Remark: The influence of the last few hard-to-get items on the expected sampling time is considerable:
To demonstrate the effect of those rare items, we used equation (39) with m = 1000 to compute the expected
time with the Linear distribution to draw all but the 10 items with smallest probabilities, and obtained
E[TC990

] = 106,387.30, about one sixth of the corresponding E[T (pp)].
The smoothness of the function we integrate does not lend it to asymptotic analysis by most standard

methods. Recently the issue was investigated by S. Boneh and Papanicolaou in [10]. Their main result is
establishing two types of behavior for this value: Let pp be the normalized m-prefix of the infinite sequence

α = {an}. They show that the limit limm→∞ ∫∫[1 − Π m
n=1(1 − exp(−ant))]dt exists, and denote it by L(α ).

When L(α ) is finite, E[T (pp)] is naturally ~ L(α )Σm
n=1an. When L(α ) = ∞, they show that under additional
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restrictions on the an, the L(α ) in the expression for E[T (pp)] can be replaced by f (m)ln[ f (m)/ f ′(m)],
where f (n) ≡ 1/an. The linear, as well as the geometric distribution fall in the first type; there seems to be
no general method to obtain an estimate for L(α ) in this case. For example, all we can say about sampling
with pi = cqi (with q > 1) is that E[T (ppGeom)] is proportional to qm+1 L({qn}), which reminds us of equation
(53).

(b) Dispersion measures and tail probabilities

The variance of T ( pp) is somewhat more expensive to calculate than the expected value – even when using
equation (43). Hence we only computed it for m = 1000 for the above distributions, and evaluated the
variance ratios. We found the values 0.20521 and 0.72201 for the Zipf and the Linear distributions,
respectively. (For the EL case it equals √1637450/7485 = 0.17134). Tail probabilities are hard to compute,
despite the innocent appearance of equation (41). A direct approach uses the Cauchy integral formula,

(54)Pr[T ( pp) > n] = 1 − n!
C
∫z−n−1

m

i=1
Π(e pi z − 1)dz = 1 − n!

2π

2π

0
∫ z−n

m

i=1
Π(e pi z − 1)dθ ,

where in the last expression z = eiθ . The integrand is very volatile, hence direct integration is unstable.
However, the integrand is significant only at values of z with small argument, and we can use the saddle-
point method: writing the integrand in the first line of equation (54) as exp(hn(z)), we have

(55)Pr[T (pp) > n] ≈ 1 − n!

m

i=1
Π(e pi Rn − 1)

Rn
n+1√ 2π hn′′(Rn)

,

where Rn is the root of the equation h′n(z) = 0. Experiments with this expression showed it is difficult to
obtain meaningful results— such as tail probabilities below 0.02—without using (the relatively slow)
multiprecision arithmetic. Consider for example the EL case, where it is easy to show that ∆ ≡ n + 1 − Rn is
positive, and tends fast to zero (it is smaller than 1 already for n ≈ m lnm, that is – for all values at which one
would consider computing tail probabilities). We find there

(56)Pr[T ( pp) > n] ≈ 1 − n!Rm−n
n

∆m√ 2π (n + 1)(1 − ∆/m)
(EL).

Solving for Rn is easy, but the cancellation is time-consuming to overcome.

(c) Sampling tradeoffs

Consider equation (26). We can get closed-form results from it for the EL case as follows. Picking n =
E[T (ee/m)] = mHm we find, for large m

(57)E[Yn(ee/m, 1)] = m[1 − (1 − 1
m )mHm ] ≈ m(1 − e−Hm ).

The approximation of Hm by ln m + γ suffices here; the error is (12m)−1 + O(m−2), while γ ≈ 0. 57722. We
find that the expected number of items detected by the time the collector would expect to finish is extremely
close to m, at m − e−γ ≈ m − 0. 56146, with the shortfall essentially independent of m (Fig. 1 suggests this as
well). From equation (2), the standard deviation of T (ee/m) is approximately mπ /√6 ≈ 1. 28255m. It is a
suitable unit of comparison with E[T (ee/m)]. In Table 3 we denote the expected number of items found in
E[T (ee/m)] + k × mπ /√6 trials by m − a, where a the ‘shortfall’.
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k a

−4 94.9148
−3 26.3227
−2 7.30004
−1 2.02451
0 0.56146
1 0.15571
2 0.04318
3 0.01198
4 0.00332

Table 3: Expected shortfalls for sampling in the EL case

To appreciate the values in this table, note first that these shortfalls are virtually independent of m. Secondly,
the length of E[T (ee/m)], when measured in standard deviations is quite small: it comes to 3.6 for m = 100,
5.386 for m = 1000 (where all of the approximations used above are quite tight), and 7.1813 and 8.9766 for
m at 104 and 105, respectively. For the last case, e.g., the table provides that in the first 55% of the expected
total sampling time, the expected number of detected items is 99905.1. On the other hand, to be fairly
confident that all the items are obtained the collector must endure a very long sampling sequence.

For other vectors pp we do not have such closed expressions, but numerical experimentation revealed very
similar patterns, usually with smaller shortfalls. Formally this is so because of their larger variance ratios,
but it is inutitively clear as well, since T there is almost entirely due to the smaller pi << 1/m.

(d) Unknown probability vector pp

We look now at the CCP when the vector pp is not known. To our mind, this is the most interesting situation,
since this is the state of affairs in many applications. It also differs from the foregoing methodologically,
since a statistical dimension appears.

What does the item-drawing process tell us about pp? We could simply count the number of times each
item comes up in the sampling process, and use it to estimate the probabilities. Good estimates, especially
for the smaller probabilities, require inordinately long sampling times, typically much longer than E[T (pp)]
(see [29]). We could settle for less, and just inquire about the general shape of the vector: is it close to ee/m?
Or to the Zipf distribution? Or to any other familiar distribution? The process N1(n) that was considered in
problem (8) appears interesting in this context. It requires very little overhead in terms of book-keeping,
compared with maintaining counters for all items, and is informative. To show this we computed its
expected value for several types of pp, for a few values of m and plotted the results, in Fig. 3.
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Fig. 3: The fraction of items observed exactly once vs. sample size

For all the distributions, the curve for m = 10 peaks higher and sooner than the others. The high
dispersion of the curves for the Zipf distribution is the result of the increase of the relative part of small pi .
At least between these families one can distinguish with some experimentation.

Another situation of interest arises when some of the components of pp might be zero! An example of
such situation is the redundancy problem introduced as application (1) in Section 1. Out of the m
constraints, let q be hard. The other r = m − q will never show up, regardless of how long the optimizer
samples. Since the value of r is not known a priori, it is reasonable to ask about a stopping rule which does
not depend on the number of sampled items, and in particular – not on its closeness to m. In [40] Robbins
makes a remarkable suggestion, attributed there to A.M. Turing: Let χ i(n) be a random variable correspond-
ing to item #i, that assumes the value zero if that item has been sampled by the n-th trial, and 1 otherwise.
The quantity of interest for the optimizer, that measures ‘‘what remains to be done,’’ is U(pp, n) = Σpi χ i(n) –
a random variable that is unobservable, by definition. (Its reciprocal is sometimes called the resistance of
the process.) Its expected value is easy: Pr[χ i(n) = 1] equals (1 − pi)

n, hence

(58)E[U(pp, n)] =
m

i=1
Σ pi(1 − pi)

n.

Comparing this with equation (47) we find

(59)E[U(pp, n)] = 1
n + 1 E[N1(pp, n + 1)].

Since N1(pp, n + 1) is certainly observable, the optimizer has, at ‘time’ n + 1, an unbiased estimate of
U(pp, n). The curves in Fig. 3 should be viewed again in the light of this characterization. To find the
variance of U(pp, n) we compute E[U2(pp, n)], as

(60)E[(
i
Σ pi χ i(n))(

j
Σ p j χ j(n))] =

m

i=1
Σ p2

i (1 − pi)
n +

i≠ j
Σ pi p j(1 − pi − p j)

n.

It is easy to find observables that estimate these sums. Let N2(pp, n) be the number of items drawn exactly
twice in the first n trials, and N(2)(pp, n) be (N1

2 ), the number of distinct pairs observed once (in any order) in
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that sequence. Then immediately

(61)
E[N2(pp, n)] = (n

2)
m

i=1
Σ p2

i (1 − pi)
n−2

E[N(2)(pp, n)] = n(n − 1)
i≠ j
Σ pi p j(1 − pi − p j)

n−2.

Hence the unbiased estimate

V̂ [U(pp, n)] =
N2(pp, n + 2) + 1⁄2N(2)(pp, n + 2)

(n + 2
2 )

2 −
N 2

1 (pp, n + 1)
(n + 1)2 .

The critical value for the viability of this approach is the variance of the difference U(pp, n) −
N1(pp, n + 1)/(n + 1). It is available from results above, except the expected value of their product. To
compute it write N1(n) = Σiζ i(n), where the ζ i are 0−1 variables with the obvious interpretation, and find

(62)E[U( pp, n) N1(pp, n + 1)] =
m

i=1
Σ p2

i (1 − pi)
n +

i≠ j
Σ pi p j(1 − pi − p j)

n− 1((n + 1)(1 − p j) − pi).

Estimates for the result are apparent from equation (61) and the similar statistic of the number of pairs with a
(2,1) record.

The reader must have realized that this is not a standard estimation procedure; we are ‘‘estimating’’ a
random variable rather than a parameter. Hence, in addition to bias, the question of the correlation between
this variable and its estimator is of importance. It is not easy to see from equation (62) that the correlation
here is frequently negative, but it is – and until n is of the order of the time to completion – quite large. In
several experiments its size did not seem to depend much on the shape of pp except indirectly: it is a slowly
decreasing function of the ratio n/E[T (pp)]. As this ratio goes to 1, the correlation typically goes from the
range (−0.6,−0.4) to about (−0.1,−0.05), and the same rate of decrease persists. At larger values of n it
becomes positive (and stays very small). At the same time the variance ratio of U(pp, n) (and of its
estimator) increases, hence the estimate should be considered to provide at best order-of-magnitude
information only – in spite of its being unbiased!

In a different scenario m is not known, and we inquire about estimating directly the number of coupons
that have been missed, or the number of new items the sampler may expect to find in the next n′ trials,
following a sample of size n. We discuss this ‘‘prediction’’ problem below, after introducing our second
computational tool.

5. THE RELATED POISSON PROCESS AND PREDICTION

There is a different way of looking at the sampling process, that is suggested by equation (30). Consider m
independent Poisson counting processes, with parameters {pi}. Since the probabilities sum to one, the
expected total number of counts per time unit is one as well. This allows us to establish an equivalence
between the ‘time’ of those processes and the ‘time’ of the coupon sampling process − which is simply the
number of sampled coupons. For example, the probability that each of the Poisson processes produces at

least one count by time t is Πm
i=1(1 − e−pi t). Hence the expected time until they all count (at least once) is

given by equation (30). Similarly, equation (32) is the expected time to get m − 1 distinct counts.
Bickel and Yahav show in [5] that these processes are a limiting form of the discrete ones, and use them

as asymptotic approximations. Holst shows in [31] a deeper relationship between the two schemes, and
obtains a result which is related to Problem (1) above. We show it, using his notation: Let {Zn} denote the
time intervals between successive counts, and Xn − the type of the nth arrival. He considers the stopping
time Tk;m, which is when exactly k of the processes have reached—or exceeded—their quota (as in problem
(1), process #i has a quota of ri). Let Ti denote the time until process i fills its quota; it has the Erlang
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distribution with parameters (ri , pi). Now he observes that Tk;m is the kth order statistic of {Ti}
m
i=1. If Tk;m

falls at the Wk;mth arrival, we have that

(63)Tk;m =
Wk;m

j=1
Σ Z j ,

where Wk;m and the Z j are all independent. Now Holst computes the EGF of both sides,

(64)E[exp(x Tk;m)] = EW [EZZ [exp(x
Wk;m

j=1
Σ Z j) Wk;m]],

and since the interarrival periods are i. i. d . ∼ exp(1), this gives

(65)E[exp(x Tk;m)] = E[(1 − x)−Wk;m ],

whence an immediate relationship follows between the moments of the continuous time Tk;m and the
(ascending) factorial moments of its discrete version Wk;m.

The distribution of the number of unsampled coupons after n drawings approaches asymptotically, for
large m and n, the Poisson distribution with parameter Σm

i=1 exp(−npi). Holst et al. show in [32] an estimate
of the rate of convergence to this limit, for pp which is not ‘too far’ from the EL case. They prove that when
all the probabilities satisfy c1/m ≤ pi ≤ c2/m, the rate of convergence to this distribution is bound from above
by C ⋅ max(m−c1/c2 , m−1⁄2 lnm), for some constant C.

Poisson Transform

A systematic way to relate the two processes uses the Poisson transform which was introduced in [25] for
the EL case, and generalized for unequal probabilities in [28, §7.4]. Let A(t) be a functional over the Poisson
processes up to time t, such as a moment of a counter or a probability related to some stopping time, and let
An be the corresponding functional with respect to the first n samples of the discrete process. The value of
A(t) may be computed by conditioning on the number of ‘arrivals’ during t, since given that n arrivals
occurred, they are distributed among the coupon types according to the same underlying multinomial
distribution. Hence

(66)A(t) =
n≥0
Σ Pr[n arrivals during t]An =

n≥0
Σ e−t tn

n! An.

In other words, A(t)et is the exponential generating function of {An}. If we can compute the first − the
second is immediately available:

(67)An = n![tn]A(t)et .

We hav e thus another stochastic process, in continuous time, of independent processes (unlike the coupon
sampling processes, where the discreteness of the time measure introduces dependencies), which provides a

handle on the original, less tractable one. For example, since we have Πi(1 − e−pi t) for the probability to

complete by time t, equation (67) provides n![tn]Πi(e pi t − 1) for the probability of completing within n
purchases; viz. equation (41). Many other derivations become startlingly easy this way.

We return now to the question of prediction, introduced at the end of Section 4. First in the Poisson
context: The process is observed for a duration T , and the number of times each coupon appears is recorded.
We want to compute ψ (T , t), the expected number of coupons that were not observed during T , but will be
observed during an additional observation period of t. The contribution of coupon #i to this expectation is

(68)Pr [Coupon #i is not observed in T and is observed in t] = e−piT (1 − e−pi t).

This gives immediately, as in [9],
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(69)ψ (T , t) =
m

i=1
Σ e−piT (1 − e−pi t).

As t → ∞ we find an estimator for the total number of unobserved types, ψ (T ) = Σm
i=1 exp(−piT ). Equation

(66) leads to exp(T + t)ψ (T , t) being the (double) exponential generating function of ψ (N , n). Hence we
find the obvious-looking result

(70)ψ (N , n) = N !n![T N tn]
m

i=1
Σ eT (1−pi)(et − et(1−pi)) =

m

i=1
Σ(1 − pi)

N (1 − (1 − pi)
n).

Naturally, the collector knows neither m nor the pi , but the first N observations provide estimates.
Specifically, if coupon #i was observed k times, the maximum-likelihood estimate of pi is k/N . The number
of coupons with this estimated reference probability is just the Nk we introduced above. Denoting by nk the
observed value of Nk , equation (70) provides an estimate for the “prediction function” ψ (N , n),

(71)ψ̂ (N , n) =
k≥1
Σ nk(1 − k

N )N (1 − (1 − k
N )n).

Like ψ (T ), an estimate for the total number of coupons unseen during the initial sampling is obtained as
n → ∞: ψ̂ (N ) = Σk≥1nk(1 − k/N )N ≈ Σk≥1nk e−k .

This procedure appears far odder than estimating U(pp, N ), the amount of ‘missing probability’: ev en if
U(pp, N ) were known, the sampling process up to N provides no information whatsoever about the number
of coupon types among which this unobserved probability is divided. There is no denying the intriguing
structure of this problem, though.

The basic idea is apparently due to Good and Toulmin [26]. They used the expression for E[Nk(T )] in
the Poisson model,

(72)E[Nk(T )] =
m

i=1
Σ Pr [type i arrives k times during T ] =

m

i=1
Σ e−piT (piT )k

k! .

When this is inserted into a power series development of the second factor of each term in equation
(69)—absolute convergence of the sums allows all the manipulations—we get

(73)

ψ (T , t) =
m

i=1
Σ e−piT

k≥1
Σ (−1)k+1 (pi t)

k

k!

=
k≥1
Σ (−1)k+1( t

T )
k m

i=1
Σ e−piT (piT )k

k! =
k≥1
Σ (−1)k+1E[Nk(T )]( t

T )
k
.

Hence they introduced the following estimator,

(74)ψ̂1(T , t) =
k≥1
Σ (−1)k+1nk( t

T )
k
,

which has a similar flavor to the estimator shown for U(pp, n). A difficulty this estimator shares with ψ̂ (N , n)
is the need for E[Nk(T )], since the observed values nk are very inefficient estimators of these expectations.
In practice the situation with ψ̂1 is much worse: it is a polynomial in t, which must lead to serious errors
when large values of t are used. It may not even be positive for all t! This estimator, with some corrections,
is used in [4] to estimate the number of executions under a regime that imposed imperfect news blackout,
and in [17] to estimate the number of words of English that Shakespeare knew, on the basis of his available
output. A total of N = 884647 words of his oeuvre were counted to obtain the values of nk . The number of
different words among the near million is 31534 (actually, this is the number of ‘word types,’ a term that
counts separately certain variations). Since the estimator (74) does not have a limit, the authors employ a
number of ingenious ideas to tame it, and obtain a limit they denote by ∆̂(∞). Their conclusion is that
“[The] estimate ∆̂(∞) = 35000 is a reasonably conservative lower bound for the amount of vocabulary
Shakespeare knew but did not use.” When the same data is plugged in the estimator ψ̂ (884647), we obtain
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the value 6027. If he doubled his output (i.e. n = N ), ψ̂ (N , N ) predicts that 3985 new words would have

been used. While these numbers appear to us somewhat likelier2 than the other estimate, a fact due to ψ̂ (N )
not suffering polynomial growth, it is clearly biased, and possibly heavily so. For example, we need a value
for m in ψ (N ); our best estimate for it is naturally m̂ = Σnk (this is the maximum-likelihood estimate),
missing precisely the number we wish to estimate. One of us proposed in [9] a correction algorithm, to
compensate for this bias. We do not know yet what can be claimed about its properties.

It would be obvious from the above that the prediction problem involves serious model-theoretic issues.
A good recent survey [12] goes into many of these in greater detail. It also contains an extensive
bibliography on the subject, and echoes what is apparently the consensus of the statistical community, that
the problem cannot be satisfactorily resolved without additional assumptions. An example is the ‘‘Fisher
assumption’’ (following [20], where pp is assumed to approximate a gamma distribution over the coupon
types).

6. CONCLUSION

We hav e shown that for computations involving CCP-like processes one may reason with various tools. We
described first simple operations over languages. This mechanism frequently produces results in terms of
integrals that are easy to evaluate, often requiring computation times which are linear in the number of
coupon types, whereas exact calculations need exponential time. We then showed how the Poisson
transform may be used to obtain certain results for the CCP from a related, much simpler process.

The CCP and several similar problems are considered to be particular cases of the “graph covering
problem” (or Markov chain simulation), where an agent is moving from node to node (state to state) and the
same questions that arise in the CCP can be asked [45]. However, the CCP is very special—corresponding to
complete graphs—and the above tools are not suitable for the more general problem – except in highly
degenerate cases that can be at least approximated by the CCP. See [2] for a recent reference to these issues.
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