
Version: 2/14/2013 (8:30 PM) Combined HW6 + HW7 Advanced

HW 6+7 Advanced: CS 110X C 2013

Note: This homework (and all remaining homework assignments) is a partner homework and must be

completed by each partner pair. When you complete this assignment, you must not share your answers

with any other student. Only one person from a partner pair needs to submit the assignment.

Only student teams confident with their Python skills should attempt this homework. Should you do so,

it will become your grade for both Homeworks 6 and 7 (thus it is worth 10% of your grade). Only

attempt this homework if both programming partners agree to tackle this assignment.

For this homework you will be tackling a more substantial problem that you are to break up in to a

number of sub-steps. Lab4 was designed to get you thinking along these lines, but now it is time to put

that theory into practice.

One of the most common structures in business applications is a linear “pipeline” of information.

Each task produces output for the subsequent task, and each one independently realizes a specific sub-

step of the overall application. To complete HW6+7 you are to complete the implementation of a

number of functions. Each one can be tested independently, and once you have them all done, the final

larger application is realized. I have provided two functions to help “set the stage” for you.

Let me show you the code for main, which is the entry point into the program:

All input data comes from this file.

dataSet = '1600_baseball_players_2008_thru_2012.csv'

Data created from this program appears in the following CSV file

outputFile = 'outputSet.csv'

def main():

 """Allow user to experiment with a data set to uncover data and trends"""

 # Retrieve headers from the data set

 headerList = retrieveHeader()

 print ("Input file contains " + str(numRecords()) + " records.")

 # Find the index locations of the user fields of interest

 indices = selectColumns(headerList)

 if len(indices) == 0:

 return

 # Determine what multiple of std to use for threshold

 multiple = input ("How many stdevs is your threshold? (i.e., 1) ")

Task One Task Two Task Three Task Four

Version: 2/14/2013 (8:30 PM) Combined HW6 + HW7 Advanced

 # Compute the threshold values for the given columns.

 thresholds = computeThresholds(indices, multiple)

 count = identifyPlayers(headerList, indices, thresholds)

 print (str(count) + " player data written to " + outputFile)

This method retrieves the list of column headers from the dataSet file and tells the user how many

records are in the file. Then the user is asked to select a number of these columns in which he would like

to find outliers, namely, those records whose values that are higher than the average for that column

plus some multiple of the standard deviation for that column. The program identifies the records which

satisfy the user’s criteria and then the values are written to outputFile.

Version: 2/14/2013 (8:30 PM) Combined HW6 + HW7 Advanced

Q1 numRecords()

This function determines the number of available records in the data set. It returns an
int value.

Sample Output
>>> numRecords()

1600

The name of the file to use is stored in the module variable dataSet. Be sure to close
the file after reading its contents.

Q2 retrieveHeader()

This Function retrieves the header row from dataSet and returns a list of strings representing
the fields. No entry should have '\n' in its value. Be sure to close the file after reading its
contents.

Sample Output
>>> retrieveHeader()

['Rk', 'Player', 'HR', 'Year', 'Age', 'Tm', 'Lg', 'G', 'PA',

'AB', 'R', 'H', '2B', '3B', 'RBI', 'BB', 'IBB', 'SO', 'HBP',

'SH', 'SF', 'GDP', 'SB', 'CS', 'BA', 'OBP', 'SLG', 'OPS', 'Pos']

Q3 computeStdev(columnIndex)

This function processes dataSet to compute the float standard deviation of the values found

in the designated column. It returns a single float value.

In the existing dataSet, four of the columns – Player (1), Tm (5), Lg (6), Pos(28) – are string

values, so you can assume that columnIndex will never be one of these values.

Sample Output
>>> computeStdev(2)

9.0378639060551897

>>> computeStdev(4)

4.1176053037536295

You will need to import numpy for this computation (as you did on an earlier homework). Be sure
to close dataSet after reading its contents.

Version: 2/14/2013 (8:30 PM) Combined HW6 + HW7 Advanced

Q4 computeAverage(columnIndex)

This function processes dataSet to compute the float average of the values found in the

designated column. It returns a single float value.

In the existing dataSet, four of the columns – Player (1), Tm (5), Lg (6), Pos(28) – are string
values, so you can assume that columnIndex will never be one of these values.

Sample Output
>>> computeAverage(2)

13.988125

>>> computeAverage(4)

28.80875

You will need to import numpy for this computation (as you did on an earlier homework). Be sure
to close dataSet after reading its contents.

Q5 computeThresholds(indices, multiple)

This function takes a list of n indices and a multiple float. It returns a list of n threshold float
values. Each threshold value is computed by calculating the average and stdev for a given column
index (drawn from indices); then the threshold = average + multiple * stdev.

Sample Output
>>> computeThresholds([2,4],1)

[23.02598890605519, 32.926355303753631]

>>> computeThresholds([2,4],1.5)

[27.544920859082787, 34.985157955630442]

Given a list of column indexes and the multiple of stdevs, compute threshold values for the
assigned columns. Make use of the computeAverage(columnIndex) and
computeStdev(columnIndex) functions that you defined earlier.

Version: 2/14/2013 (8:30 PM) Combined HW6 + HW7 Advanced

Q6 selectColumns(headerList)

This function allows the user to select a number of fields as contained in headerList and

returns a list of their respective index locations in headerList.

Here, for example, the function was given a list of six fields (a through f). The user selected field
b and d. However, when he typed X, he was told that field does not exist. Also, when he tried to
select the same field again, he was told that he had already selected that field. When the user is
done selecting fields, he pressed ENTER and the Python Shell shows that the indices of the
selected fields
are 3 and 1
(which is the
order that the
user had
selected).

If the user
presses
ENTER (and
by doing so
selects no
fields) then
the empty list [] is returned.

Note that this function does not need to open dataSet for reading.

Sample Output
>>> selectColumns(['a', 'b', 'c', 'd', 'e', 'f'])

There are 6 columns:

a b c d e f

Select a column to include (or press ENTER to quit) d

Select a column to include (or press ENTER to quit) b

Select a column to include (or press ENTER to quit) X

 ** That column does not exist **

Select a field to include (or press ENTER to quit) d

 ** You have already selected that column **

Select a field to include (or press ENTER to quit)

[3, 1]

Version: 2/14/2013 (8:30 PM) Combined HW6 + HW7 Advanced

Sample Output
Once you complete the assignment, here is a transcript of a sample run. What if you want to find

whether any player has hit more than 3 stdevs above the average of homeruns for the data set.

>>> main()

Input file contains 1600 records.

There are 29 columns:

Rk Player HR Year Age Tm Lg G PA AB R H

2B 3B RBI BB IBB SO HBP SH SF GDP SB CS BA

OBP SLG OPS Pos

Select a column to include (or press ENTER to quit) HR

Select a column to include (or press ENTER to quit)

How many standard deviations is your threshold? (i.e., 1) 3

12 player data written to outputSet.csv

And the output file contains the following information for twelve players.

Name HR

Jose Bautista 54

Ryan Howard 48

Albert Pujols 47

Prince Fielder 46

Ryan Howard 45

Miguel Cabrera 44

Mark Reynolds 44

Curtis Granderson 43

Josh Hamilton 43

Jose Bautista 43

Edwin Encarnacion 42

Albert Pujols 42

Threshold 41.10172

Version: 2/14/2013 (8:30 PM) Combined HW6 + HW7 Advanced

Let’s try another run. What if you want to find the players who hit a lot of homeruns, but also strike out

a lot of times. Here we seek player data whose values are greater than 2 stdevs above average:

>>> main()

Input file contains 1600 records.

There are 29 columns:

Rk Player HR Year Age Tm Lg G PA AB R H

2B 3B RBI BB IBB SO HBP SH SF GDP SB CS BA

OBP SLG OPS Pos

Select a column to include (or press ENTER to quit) HR

Select a column to include (or press ENTER to quit) SO

Select a column to include (or press ENTER to quit)

How many standard deviations is your threshold? (i.e., 1) 2

21 player data written to outputSet.csv

And the file contains:

Name HR SO

Ryan Howard 48 199

Ryan Howard 45 186

Mark Reynolds 44 223

Curtis Granderson 43 195

Josh Hamilton 43 162

Adam Dunn 41 222

Curtis Granderson 41 169

Adam Dunn 40 164

Matt Kemp 39 159

Carlos Pena 39 163

Adam Dunn 38 199

Adam Dunn 38 177

Mark Reynolds 37 196

Dan Uggla 36 156

Jason Bay 36 162

Jayson Werth 36 156

Jay Bruce 34 155

Giancarlo Stanton 34 166

Chris Davis 33 169

Ryan Howard 33 172

Jack Cust 33 197

Threshold 32.06385281 152.626652

Version: 2/14/2013 (8:30 PM) Combined HW6 + HW7 Advanced

How To Get Started On This Assignment
A template HW67_Template.py file is provided to you. Use the same data as for Lab 4.

The following functions are independent and can be completed without depending on any other

functions. I would tackle this problem in the following order:

 numRecords() February 7 2013

 retrieveHeader() February 7 2013

 computeAverage(columnIndex) February 8 2013

 computeStdev(columnIndex) February 8 2013

 selectColumns(headerList) February 10 2013

With these done, the following function depends on computeStdev and computeAverage, which it

invokes directly (I’ll leave it to you to see how).

 computeThresholds(indices, multiple)

Submit your HW67.py file using the web-based turnin system. As we have mentioned in class, only one

of the team members needs to submit the assignment. But just make sure that something gets

submitted!

Also, if you are going this route, please email cs110x-staff@cs.wpi.edu about your intentions.

http://www.cs.wpi.edu/~heineman/html/teaching_/cs110x/c13/HW67_Template.py
http://www.cs.wpi.edu/~heineman/html/teaching_/cs110x/days/lab_4/1600_baseball_players_2008_thru_2012.csv
mailto:cs110x-staff@cs.wpi.edu

