HW2: CS 110X C 2014

Note: This homework (and all remaining homework assignments) is a **partner homework** and must be completed by each partner pair. When you complete this assignment, you must not share your answers with any other student. Only one person from a partner pair needs to submit the assignment, but make sure that you submit before the deadline!

Note: I have revised this homework to slow down the pace of the course. Some questions removed from this assignment will appear in HW3.

Canopy Issues

If you are running Canopy then you have to make a small configuration change for this homework to work properly. From within the Canopy Editor, select menu item **Edit | Preferences...**.

Then in the Preferences window, select the **Python** tab and be sure that **PyLab backend** is set to "Interactive (wx)". I have tested this on Windows and on a MacBook.

Homework Instructions

This **revised** Homework has **eight** questions.

For each question be sure you understand exactly the format of the output that is requested. You will lose points if you do not exactly follow the format of the output for the individual questions. Should you have any questions, be sure to post on the HW2 discussion forum.

Q1	Demonstrate function returning values
	Sound waves are constructed based on Sinusoidal data, which can easily be computed
Skills	using the mathematical Sine function. For this problem define a function $sin(x)$ that
PM-1	uses the Taylor series to approximate this value using six terms as follows:
PF-2	
PF-3	$x^3 x^5 x^7 x^9 x^{11}$
	$\sin(x) \cong x - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \frac{1}{9!} - \frac{1}{11!}$
Lecture	
Dependency	Note that $n! = n * (n - 1) * (n - 2) * * 3 * 2 * 1$ and x is a real number.
Jan-23	
	Your function must return a value, not just print it out to the console. Note that
	because this computation is an approximation, there are some inputs which will result
	in values that are not within the expected [-1, 1] range of the Sine function.
Sample Output	>>> sin(3.1415)
in IDLE	-0.00035233720521839814
	>>> sin(1.5708)
	0.999999437325972
	>>> sin(7)
	-11.842203107463526
Sample Output	In[3]: sin(3.1415)
in Canopy	Out[3]: -0.00035233720521839814
	In[4]: sin(1.5708)
	Out[4]: 0.9999999437325972

Note: Canopy more clearly shows the return value of the sin() function by the **Out[n]** declaration which shows the value returned by the function that was invoked on the **In[n]** line. If a function has no **return** statement, then there is no **Out[n]** line in response to a function invocation.

Q2	Demonstrate definite for loop
	The Taylor expansion from Question Q1 is an infinite computation and you can
Skills	compute as many terms as you wish. The $sin(x)$ function you wrote in Q1 computes
PF-2	only six terms in the expansion, but a user may wish for more for increased accuracy.
PF-3	
CS-5	$x^3 x^5 x^7 x^9 x^{11}$
CS-9	$\sin(x) = x - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \frac{1}{9!} - \frac{1}{11!} + \cdots$
SM-2	
SM-3	Define a function taylorSin (x, n) that computes n terms in the Taylor series.
PM-5	When invoked with $n=6$ the function result will be identical to the $sin(x)$ function
	you wrote for Question Q1.
Lecture	
Dependency	To demonstrate your knowledge of the for loop, your function must print information
Jan-23	as it approximates the function value. Follow the format below exactly to receive full
	credit. I am asking you to print this information with each pass because I believe it will
	help you understand the dynamic behavior of for loops.
	Inere must be exactly n lines of output, and each line shows the sign of the term being added, the expense of the r value and the approximation computed so far, that is
	added, the exponent of the x value and the approximation computed so far, that is,
	You will find the math factorial(n) function quite useful but you can still complete this
	nrohlem without it
	Note that the signs alternate and the exponents are all increasing odd numbers.
Sample Output	>>> taylorSin(3.14,3)
in IDLE	sign = 1, exponent= 1, approximation= 3.14
	<pre>sign = -1, exponent= 3, approximation= -2.01985733333</pre>
	<pre>sign = 1, exponent= 5, approximation= 0.523849134853</pre>
	0.5238491348533336
Sample Output	In[1]: taylorSin(3.14, 3)
in Canopy	<pre>sign = 1, exponent= 1, approximation= 3.14</pre>
	sign = -1, exponent= 3, approximation= -2.01985733333
	sign = 1, exponent= 5, approximation= 0.523849134853
	UUT 1 : 0.5238491348533336

Q3	Demonstrate knowledge of if statement, else, elif, definite for loop
	Given a list of 'Yes' and 'No' string literal values, determine the result of a vote,
Skills	namely:
CS-1	
CS-2	 A win for Yes (more Yes than No votes)
CS-3	A win for No (more No than Yes votes)
CS-9	A tie (same number of Yes and No votes)
DT-10	
	Define a function tallyVote(votes) that prints the results of the votes as recorded
Lecture	in a list that contains only 'Yes' and 'No' string literals.
Dependency	
Jan-24	
Sample Output	<pre>>>> tallyVote(['Yes', 'No', 'Yes', 'No', 'No'])</pre>
in IDLE	A win for No
Sample Output	<pre>In[1]: tallyVote(['Yes', 'No', 'Yes', 'No'])</pre>
in Canopy	A tie

Q4	Incrementally construct a list
	In mathematics, an arithmetic sequence is a sequence of numbers such that the
Skills	difference between the consecutive terms is constant. For instance, the sequence 5, 7,
PF-3	9, 11, 13, 15 is an arithmetic progression with common difference of 2 that starts at
DT-6	5.
Lecture	A sequence is uniquely determined by a_0 (starting value), d (the common difference)
Dependency	and n (the number of terms to generate). You are to write a Python function that
Jan-24	returns a list containing the values in such a sequence.
	Define a function arithmeticSequence(a0, d, n) that returns a list containing
	the first <i>n</i> terms in the sequence.
Sample Output	<pre>>>> arithmeticSequence(5, 2.5, 7)</pre>
in IDLE	[5, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0]
Sample Output	<pre>In[1]: arithmeticSequence(1, 1, 10)</pre>
in Canopy	Out[1]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Q5	Demonstrate knowledge of if statement, definite for loop
	Given a list of values, return a new list that contains just the numbers that are within a
Skills	designated range.
CS-1	
CS-2	Define a function restrict(collection, low, high) that returns a list
CS-3	containing the elements in collection that are \geq low and \leq high.
CS-9	
DT-10	Note that if none of the elements falls within the designated range then the empty list
	[] is returned.
Lecture	
Dependency	
Jan-24	
Sample Output	>>> restrict([5, 3, 11, -5, 2, 7], 1, 7)
in IDLE	[5, 3, 2, 7]
Sample Output	In[1]: restrict ([5, 3, 11, -5, 2, 7], 1, 7)
in Canopy	Out[1]: [5, 3, 2, 7]

Q6	Incrementally construct a list
	When plotting real valued functions, you often need to create a list of evenly space x-
Skills	coordinates drawn from some range [low, high].
PF-3	
DT-6	Define a function generateSamples(low, high, number) that returns a new list
	containing the desired number of evenly spaced samples that includes both low and
Lecture	high in the list.
Dependency	
Jan-24	Low and high can be integers or real numbers. You can assume that low will always be
	strictly smaller than high.
Sample Output	<pre>>>> generateSamples(1.5, 2.5, 5)</pre>
in IDLE	[1.5, 1.75, 2.0, 2.25, 2.5]
Sample Output	<pre>In[1]: generateSamples(1,5,4)</pre>
in Canopy	Out[1]: [1.0, 2.33333333333333, 3.666666666666666665, 5.0]

07	Demonstrate knowledge of if statement, definite for loop, function invocations
	Write a function computeState(collection) that allows the user to show a
Skille	desired statistic for the given list passed into the function
	desired statistic for the given ist passed into the function.
	• Average value in the list
	Average value in the list
	Maximum value in the list
DT 10	• Maximum value in the list
	• Sum of the values in the list
Lesture	• Number of values in the list in the range [1,5] (inclusive)
Lecture	
Dependency	This function prompts the user for information as follows:
Jan-24	$\rightarrow \rightarrow $
	Select desired statistic
	1. Average
	2. Minimum value
	3. Maximum value
	4. Sum
	5. Number of values in list in range [1,5]
	Choose your statistic [1-5]: 3
	Maximum = 8
	The output produces the desired statistics as selected by the user. If the user doesn't choose a valid choice, simply print "Unknown request!"
	Note that for option #5 you must use the restrict() function that you wrote for question Q5.
	Be sure to output a useful bit of text with each computed value so the user can verify they see their desired statistic. For example, above you see "Maximum = 8" which is preferable to simply printing the value "8" on the line by itself.

How To Get Started On This Assignment

A template HW2.py file is provided to you with some sample functions already provided.

Much of the work for this assignment will be spent trying to understand the domain of sound waves and writing the appropriate Python code. In many ways, that is as it should be! The job of a programmer is more than learning a particular syntax. You need to know how to produce code relevant for a specific problem. Sometimes the code you write is only 5 lines of code (but it will be just the right five lines of code).

Submit your HW2.py file using the web-based turnin system. As we have mentioned in class, only one of the team members needs to submit the assignment. But just make sure that something gets submitted!

Change Log

- 1. Moved some questions into HW3 and added a bunch more
- 2. Revised the sample output for Q2 which had taylorSin(3.1415,3) when it should have been taylorSin(3.14,3)
- 3. Clarified sample output for Q4