HW2: CS 110X C 2014

Note: This homework (and all remaining homework assignments) is a partner homework and must be completed by each partner pair. When you complete this assignment, you must not share your answers with any other student. Only one person from a partner pair needs to submit the assignment, but make sure that you submit before the deadline!

Note: I have revised this homework to slow down the pace of the course. Some questions removed from this assignment will appear in HW3.

Canopy Issues

If you are running Canopy then you have to make a small configuration change for this homework to work properly. From within the Canopy Editor, select menu item Edit | Preferences....

Then in the Preferences window, select the Python tab and be sure that PyLab backend is set to "Interactive (wx)". I have tested this on Windows and on a MacBook.

Homework Instructions

This revised Homework has eight questions.
For each question be sure you understand exactly the format of the output that is requested. You will lose points if you do not exactly follow the format of the output for the individual questions. Should you have any questions, be sure to post on the HW2 discussion forum.

Q1	Demonstrate function returning values
Skills	Sound waves are constructed based on Sinusoidal data, which can easily be computed using the mathematical Sine function. For this problem define a function $\sin (x)$ that uses the Taylor series to approximate this value using six terms as follows: $\sin (\mathrm{x}) \cong x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}$ Note that $n!=n *(n-1) *(n-2) * \ldots * 3 * 2 * 1$ and x is a real number. Your function must return a value, not just print it out to the console. Note that because this computation is an approximation, there are some inputs which will result in values that are not within the expected $[-1,1]$ range of the Sine function.
PM-1	
PF-2 PF-3	
Lecture Dependency	
Jan-23	
Sample Output in IDLE	```>>> sin(3.1415) -0.00035233720521839814 >>> sin(1.5708) 0.9999999437325972 >>> sin(7) -11.842203107463526```
Sample Output	In[3]: $\sin (3.1415)$
in Canopy	Out [3]: -0.00035233720521839814
	In[4]: $\sin (1.5708)$
	Out [4]: 0.9999999437325972

Note: Canopy more clearly shows the return value of the $\sin ()$ function by the Out[n] declaration which shows the value returned by the function that was invoked on the $\operatorname{In}[n]$ line. If a function has no return statement, then there is no Out[n] line in response to a function invocation.

Q3	Demonstrate knowledge of if statement, else, elif, definite for loop
Skills	Given a list of 'Yes' and 'No' string literal values, determine the result of a vote, namely: - A win for Yes (more Yes than No votes) - A win for No (more No than Yes votes) - A tie (same number of Yes and No votes) Define a function tallyVote(votes) that prints the results of the votes as recorded in a list that contains only 'Yes' and ' No' string literals.
CS-1	
CS-2	
CS-3	
CS-9	
DT	
Lecture Dependency	
Jan-24	
Sample Output in IDLE	>>> tallyVote(['Yes', 'No', 'Yes', 'No', 'No']) A win for No
Sample Output in Canopy	```In[1]: tallyVote(['Yes', 'No', 'Yes', 'No']) A tie```

Q4	Incrementally construct a list
	In mathematics, an arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 5,7 , $9,11,13,15 \ldots$ is an arithmetic progression with common difference of 2 that starts at 5.
Skills	
PF-3	
DT-6	
Lecture	A sequence is uniquely determined by a_{0} (starting value), d (the common difference) and n (the number of terms to generate). You are to write a Python function that returns a list containing the values in such a sequence.
Dependency	
Jan-24	
	Define a function arithmeticSequence (a0, d, n) that returns a list containing the first n terms in the sequence.
Sample Output	>>> arithmeticSequence(5, 2.5, 7)
in IDLE	$[5,7.5,10.0,12.5,15.0,17.5,20.0]$
Sample Output in Canopy	In[1]: arithmeticSequence(1, 1, 10) Out[1]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Q5	Demonstrate knowledge of if statement, definite for loop
Skills CS-1 CS-2 CS-3 CS-9 DT-10	Given a list of values, return a new list that contains just the numbers that are within a designated range. Define a function restrict(collection, low, high) that returns a list containing the elements in collection that are \geq low and \leq high. Note that if none of the elements falls within the designated range then the empty list [] is returned.
Lecture Dependency Jan-24	
Sample Output in IDLE	$\begin{aligned} & \text { >>> restrict }[5,3,11,-5,2,7], 1,7) \\ & {[5,3,2,7]} \end{aligned}$
Sample Output in Canopy	$\begin{aligned} & \text { In[1]: restrict }([5,3,11,-5,2,7], 1,7) \\ & \text { Out [1]: }[5,3,2,7] \end{aligned}$

Q6	Incrementally construct a list
	When plotting real valued functions, you often need to create a list of evenly space x coordinates drawn from some range [low, high].
Skills	
PF-3	
DT-6	Define a function generateSamples(low, high, number) that returns a new list containing the desired number of evenly spaced samples that includes both low and high in the list.
Lecture	
Dependency	
Jan-24	Low and high can be integers or real numbers. You can assume that low will always be strictly smaller than high.
Sample Output in IDLE	$\begin{aligned} & \text { >>> generateSamples }(1.5,2.5,5) \\ & {[1.5,1.75,2.0,2.25,2.5]} \end{aligned}$
Sample Output in Canopy	```In[1]: generateSamples(1,5,4) Out[1]: [1.0, 2.333333333333333, 3.66666666666666665, 5.0]```

Q8
Skills
CS-1
CS-2
CS-3
CS-9
DT-10
Lecture
Dependency
Jan-27

Demonstrate ability to use pylab to plot values

Often you will need to generate a plot of a real-valued function. Fortunately, Python comes with a pylab module that will

Define a function plotRealSinVersusComputed(low, high, number) that uses pylab to plot both functions in the given [low, high] range with a number of evenly spaced x-coordiantes.

- The $\sin (x)$ function you wrote for question 1
- The math. $\sin (x)$ function provided by Python

This function must use the generateSamples() function that you wrote for question Q6. The window that appears will contain a plot that looks like the following:

As you will see, the $\sin (x)$ function you wrote is a good approximation within a narrow range of x values.

Sample Output
>>> plotRealSinVersusComputed(-6.5, 6.5, 100)
in IDLE

How To Get Started On This Assignment

A template HW2.py file is provided to you with some sample functions already provided.
Much of the work for this assignment will be spent trying to understand the domain of sound waves and writing the appropriate Python code. In many ways, that is as it should be! The job of a programmer is more than learning a particular syntax. You need to know how to produce code relevant for a specific problem. Sometimes the code you write is only 5 lines of code (but it will be just the right five lines of code).

Submit your HW2.py file using the web-based turnin system. As we have mentioned in class, only one of the team members needs to submit the assignment. But just make sure that something gets submitted!

Change Log

1. Moved some questions into HW3 and added a bunch more
2. Revised the sample output for Q2 which had taylorSin (3.1415, 3) when it should have been taylorSin(3.14,3)
3. Clarified sample output for Q4
