
Draft Version: 2/6/2014 

HW4: CS 110X C 2014 

Note: This homework (and all remaining homework assignments) is a partner homework and must be 

completed by each partner pair. When you complete this assignment, you must not share your answers 

with any other student. Only one person from a partner pair needs to submit the assignment, but make 

sure that you submit before the deadline! 

For this assignment, every function that you write must have a suitable documentation string as we 

present in class. Check the rubric to see the point values assigned for each question so you can maximize 

the points you get on this assignment. Note that the final question is quite complicated (though still 

within reach) even though it is only worth 8 points. Be sure to only begin this question after you have 

completed the rest of the homework assignment.  

Domain Information 
You have now worked with sound data for the past two homework assignments. In this homework you 

will pull it all together. Sound waves compose together in two ways. For example, assume you have 

generated two different one-second sound waves 

 Wave1 = one second playing the middle C tone (a total of 44,100 samples) 

 Wave2 = one second playing the E tone above middle C (a total of 44,100 samples) 

You can concatenate sound wave data together (this is described as Wave1; Wave2) to create a single 

wave file containing 88,200 samples. Since you are using a Python list to represent sound wave data, 

you can use the + operator with lists to concatenate the lists together to create a single list containing 

the wave data. In Python, if you have two lists x and y, then x+y concatenates the lists together. 

You can combine sound wave data together (this is described as Wave1  Wave2) to create a single 

wave file containing 44,100 samples. When combining sound waves you have to be careful to normalize 

the resulting data so all sound wave data remains within the [-1, 1] allowed range. For homework 3 you 

defined a combineSoundWave(frequencies, n) method that you used to create a combined and 

normalized wave form containing just the given frequencies. For this assignment you will write a 

separate function that normalizes combined sound wave data. 

Canopy Issues 
If you are running Canopy then you have to make a small configuration change for this homework to 

work properly. From within the Canopy Editor, select menu item Edit | Preferences….  



Draft Version: 2/6/2014 

 

 

 

 

 
 

Then in the Preferences window, select the Python tab and be sure that PyLab backend is set to 

“Interactive (wx)”. I have tested this on Windows and on a MacBook. 

In Canopy, you need to set the working directory within the code editor. Near the right edge about one 

inch from the bottom you will see a small triangle that you can click on to change the working directory. 

Select the “Change to Editor Directory” so you will find the files that you need for this assignment. 

 

  



Draft Version: 2/6/2014 

Homework Themes  
This homework will exercise your skills in string manipulation. String literals can be printed for users to 

read, but they can also contain information that can be used to write programs that are easy to use. In 

some ways, the ability to process strings is what separates mathematicians from computer scientists. 

Additionally, you will learn how to read information from and write information to files that you store 

on your computer. Often a tedious task can be automated simply by writing programs that process large 

quantities of information that are stored on disk. 

With each passing week, the homework assignments can contain truly interesting problems. The last 

problem on this homework in particular pulls together material from the past two assignments to give 

you a glimpse of the limitless power of programming. This question has a number of sub-parts that you 

should only attempt once the entire homework is done.  

Homework Instructions 
This Homework has Eight questions. 

For each question be sure you understand exactly the format of the output that is requested. You will 

lose points if you do not exactly follow the format of the output for the individual questions. Should you 

have any questions, be sure to review the HW4 rubric and post questions on the HW4 discussion forum. 

Q1 Demonstrate ability to work with strings 

 

Skills 

CS-1 
CS-3 
PF-3 
 

 
 

Write a function minuteOfDay(time) that returns an integer representing the 
number of minutes since midnight for a time string containing five characters in the 
form “HH:MM”. 
 

You can assume that the hours HH is a value ≥ 0 and  23. 

You can assume that the minutes MM is a value ≥ 0 and  59. 
 
Your function must return an integer value 

Sample Output 
in IDLE 

>>> minuteOfDay('00:18') 
18 
>>> minuteOfDay('13:37') 
817 

Sample Output 
in Canopy 

In[1]: minuteOfDay('23:59') 
Out[1]: 1439 

 

 

 

 

 



Draft Version: 2/6/2014 

Q2 Demonstrate knowledge of for loop, file access, string manipulation 

 

Skills 

SM-1 
IO-4 
CS-9 
IO-6 

 

Lecture 
Dependency 

Feb-06 
 

You manage the finances for a restaurant. Each day the workers at the restaurant start 
their shift at a certain time and work continuously until a later time (which may be 
after midnight. Be careful!) 
 
Your must compute a report for all workers given a file containing a line of input for 
each worker. Each line contains 40 characters of input as follows: 
 
 1234567890123456789012345678901234567890 
 Alfie Curtis          08:17 17:33  07.95 
 
That is, the name is shown in the first 22 characters of each line. The starting time of 
that worker’s shift is contained in characters 23 to 27, the ending time of that worker’s 
shift is contained in characters 29 to 33. Finally, the hourly wage of the worker is 
contained in characters 36 to 40. Alfie has worked a total of 9 hours and 16 minutes 
for a wage of $7.95 per hour, so he should receive a daily wage of $73.67 
 
Your job is to write a computeReport(inFile,outFile) function that reads a 
wage report for a number of workers (contained in file inFile) and creates an output 
file outFile that contains a summative report of all wages owed to each worker 
together with a final summary of the total wages reported for the day.  
 
For the sample file below, the output is shown on the right. Don’t worry about the 
formatting of dollar amounts that extend beyond two decimal digits. 
 

  

Sample Input File (workerLog.txt) Sample Output File (outputReport.txt) 
Alfie Curtis          08:17 17:33  07.95 
Barry Copping         12:10 20:11  06.80 
Doug Beswick          06:00 14:20  08.25 
Frazer Diamond        11:47 16:57  08.00 
Gilda Cohen           20:48 03:27  08.00 
Janice Burchette      13:11 19:50  08.25 
John Chapman          17:36 19:05  06.80 
Jon Berg              13:29 17:53  06.80 
Lightning Bear        22:09 05:15  07.50 
Maria De Aragon       14:43 20:36  08.25 
Mark Austin           16:55 18:47  06.80 
Paul Blake            16:07 23:39  07.50 
Peter Diamond         13:43 19:22  06.80 
Robert A. Denham      16:41 22:55  08.25 

Alfie Curtis           $73.67 
Barry Copping          $54.5133333333 
Doug Beswick           $68.75 
Frazer Diamond         $41.3333333333 
Gilda Cohen            $53.2 
Janice Burchette       $54.8625 
John Chapman           $10.0866666667 
Jon Berg               $29.92 
Lightning Bear         $53.25 
Maria De Aragon        $48.5375 
Mark Austin            $12.6933333333 
Paul Blake             $56.5 
Peter Diamond          $38.42 
Robert A. Denham       $51.425 
TOTAL WAGES FOR DAY:   $647.161666667 

  

http://web.cs.wpi.edu/~heineman/html/teaching_/cs110x/c14/Homeworks/workerLog.txt
http://web.cs.wpi.edu/~heineman/html/teaching_/cs110x/c14/Homeworks/workerLog.txt
http://web.cs.wpi.edu/~heineman/html/teaching_/cs110x/c14/Homeworks/workerLog.txt
http://web.cs.wpi.edu/~heineman/html/teaching_/cs110x/c14/Homeworks/outputReport.txt


Draft Version: 2/6/2014 

Q3 Demonstrate knowledge of indefinite loop 

 

Skills 

TBA 

 

Lecture 
Dependency 

Jan-30 
 

Define a function taylorApproximation(x, delta) that computes and returns 
the number of iterations needed for the taylor sin approximation (from the previous 
homework) to compute a value that is within a positive delta of the actual 
math.sin(x) computation. 
 
Make sure that your function returns a single integer that represents the number of 
iterations needed. You can always confirm this by using the taylorSin(x, n) 
function from the previous homework and manually confirming that the computed 
result is within delta of math.sin(x). For example: 
 

 taylorSin(5,7)  -0.9375840490206782 
 taylorSin(5,8)  -0.9609213406827259 

 taylorSin(5,9)  -0.9587763690226112 

 taylorSin(5,10)  -0.9589331651965962 

 math.sin(5)  -0.9589242746631385 
 

As you can see, using just SEVEN terms is not sufficient, since the approximation is 
more than 0.213 away from the actual value. However, with EIGHT terms, the 
approximation is .00199 away from the actual value, which is less than 0.01 as shown 
below. 

Sample Output 
in IDLE 

>>> taylorApproximation(5, 0.01) 
8 
>>> taylorApproximation(0.02, 0.01) 
1 

Sample Output 
in Canopy 

In[1]: taylorApproximation(5, 0.00001) 
Out[1]: 10 
In[2]: taylorApproximation(3.14159, 0.00001) 
Out[2]: 8 

 

Q4 Demonstrate knowledge of string manipulation 

 

Skills 

SM-1 
SM-6 
SM-9 

 

Lecture 
Dependency 

Jan-30 
 

Define a function parseDate(dateString) that returns a list of three integers 
representing the month, day and year of the date represented by dateString. 
 
The dateString will exactly contain a month name (capitalized in English) followed by a 
space followed by the day (an integer) followed by a space followed by the year (also 
an integer). 
 
Note that all values in the returned list are all integers. 
 

Sample Output 
in IDLE 

>>> parseDate('January 10 2014')  
[1, 10, 2014] 

Sample Output 
in Canopy 

In[1]: parseDate('February 6 2014')  
Out[1]: [2, 6, 2014] 

  



Draft Version: 2/6/2014 

Q5 Demonstrate knowledge of string manipulation and raw input 

 

Skills 

TBA 

 

Lecture 
Dependency 

Feb-4 
 

Since we are moving away from using the input function, you need to supply a 
suitable replacement. 
 
Write a readIntegerList() function that has the user enter a string of values 
separated by commas. It returns a list of int values corresponding to the values in the 
string. If the user simply presses Enter, then the empty list must be returned. 
 
Note that all values in the returned list are all integers. 

Sample Output 
in IDLE 

>>> readIntegerList()  
Enter a list of integers separated by commas: 4, 5, 2, 9, 10 
[4, 5, 2, 9, 10] 
>>> readIntegerList()  
Enter a list of integers separated by commas: 7 
[7] 

Sample Output 
in Canopy 

In[1]: readIntegerList()  
Enter a list of integers separated by commas: 9, 4, -3 
Out[1]: [9, 4, -3] 
In[2]: readIntegerList()  
Enter a list of integers separated by commas: <<ENTER PRESSED>> 
Out[2]: [] 

 

Q6 Demonstrate for loop 

 

Skills 

TBA 

 

Lecture 
Dependency 

Jan-24 
 

Using the generateSoundWave(frequency, n) file from the previous assignment 
you can observe that the samples of sound data all are float values between -1 and 
+1. This is known as being normalized. When combining sound waves together (using 
the listAdd(list1,list2) method from the previous assignment) you will find 
that the samples fall outside this range. 
 
Write a normalize(soundData) function that takes a list containing sound data and 
returns a new list containing normalized sound data where every sample is between 
the values -1 and +1.  
 
To do this, find the maximum positive value in the soundData list and the minimum 
negative value in the soundData list. In the normalized list, all positive values are 
divided by maximum positive value while all negative values are divided by –minimum 
negative value.  
 
Feel free to use some methods in numpy that I have mentioned in class. Note that by 
definition 0 is already normalized; also, if the values in the list already are in the -1 to 
+1 range, then you can simply return the list itself since it is already normalized.  

Sample Output 
in IDLE 

>>> normalize([-2, -1.5, -1, 0]) 
[-1.0, -0.75, -0.5, 0] 

Sample Output 
in Canopy 

In[1]: normalize([0.5, 0.75, -0.33]) 
Out[16]: [0.5, 0.75, -0.33] 
In[2]: normalize([1, 2, 3]) 
Out[2]: [0.3333333333333333, 0.6666666666666666, 1.0] 



Draft Version: 2/6/2014 

Q7 Demonstrate ability to solve problems by decomposing into existing functions 

 

Skills 

TBA 

 

Lecture 
Dependency 

Jan-30 
 

You can create sound wave data for a single note using 
generateSoundWave(frequency, n). But what if you wanted to create a sound 
wave that represents a sequence of notes. As you can imagine, you need only 
concatenate the corresponding sound waves. 
 
Given the Wikipedia entry on piano frequencies you can identify the frequencies of the 
seven basic notes in the C scale, starting with middle C and moving upwards. These are 
the notes C4, D4, E4, F4, G4, A4, B4 in the table. You can see that the eighth note C5 is 
simply double the frequency of C4. 
 

 
 
The above sequence of notes, musically, can be represented as 'CDEFGABXBAGFEDC'. 
We have to be creative in using the character X to represent the C5 frequency! 
 
You are to write a createTrack(trackData, duration) function that takes a 
string representation of notes in trackData and an integer duration representing 
the number of timed samples for each note. When duration is 44,100 then each note 
in trackData will play for one second; when 22,050 each note plays for ½ second.This 
function will return a list of sound data that represents the concatenation of the 
corresponding sound wave data for each note in succession. 
 
In the template provided the playWave(data) function plays the sound wave to 
your computer speakers, when run in Canopy. You don’t need to demonstrate that the 
sound actually plays; rather make sure you can reproduce the sample output below. 
 
For example, playWave(createTrack('CDE', 44100)) would play three seconds 
of sound, starting with the C4 note, then D4 and finally E4 note. 
 

Sample Output 
in Canopy 

In[1]: createTrack('CDE', 5) 
Out[1]: [0.0, 
 0.03726675716643086, 
 0.07448173986101789, 
 0.11159324554186605, 
 0.14854971542704604, 
 0.0, 
 0.04182796613612572, 
 0.08358271891434575, 
 0.1251911731253657, 
 0.16658049963280974, 
 0.0, 
 0.0469467696588042, 
 0.09379001160049445, 
 0.1404264264088237, 
 0.18675317076582615] 

http://en.wikipedia.org/wiki/Piano_key_frequencies


Draft Version: 2/6/2014 

 
Q8 Putting it all together 

 

Skills 

TBA 

 

Lecture 
Dependency 

Jan-24 
 

Write a function that loads up individual “tracks” of music from a file. A file can contain 
a number of lines, each of which contains a sequence of notes as described in question 
6. Using the createTrack(trackData, duration) function from Q7 you will 
create soundwave data for each track that you can compose together with each other, 
using the listAdd(list1, list2) function that you wrote in the previous 
assignment. Once you have composed all of the tracks, use the normalize() 
function to ensure that the data conforms to the -1 to +1 range. 
 
You can assume that the individual tracks all contain the exact same number of notes. 
In doing so, they will all have the same length, which is a requirement of the listAdd 
function. 
 
In music, there is the concept of a “Rest” which is a period of time that no note plays. 
For example: 

 
 
The above represents three measures playing the A note. Each individual measure 
(from left to right) is represented as follows: 

 AARA 

 ARAA 

 AAAR 
 
The track containing these three measures would be encoded as 'AARAARAAAAAR'. 
You will have to modify the encoding in createTrack() to handle the rest notes. 
 
Your function mergeTracks(filename, n) must return a list containing the data 
composed from the individual tracks as found in the filename file. The parameter n 
refers to the number of samples to use for each note. Thus if n = 11025, each note will 
be played for ¼ of a second. If you succeed in this problem, you can pass the results of 
mergeTracks into playWave and hear the song which you have composed. 
 

Sample Output 
in IDLE 

>>> mergeTracks("C_chord.txt", 3) 
[0.0, 0.14003432054986548, 0.2797392677883622] 

 

Sample Input File (StarWars™ Theme Song) 
CRRRGRRRFEDXRRRGRRRFEDXRRRGRRRFEFDRR 

 

Sample Input File (Indiana Jones™ Theme Song). This File will have two lines for two separate tracks 
RRRRRRRRRRRRRRRRRRRRRERFGRRXRRRRRDREFRRRRRRRRGRABRRFRRRRRCRDERRFRRGRRERFGRRXRRRRRDREFRRRRRRRRGRGERRDRGERRDRGERRDRGFRRERDCR 
GRRRGGGGGRRRGRRRGGGGGRRRGRRRGGGGGRRRGRRRGGGGGRRRGRRRGGGGGRRRGRRRGGGGGRRRGRRRGGGGGRRRGRRRGGGGGRRRCRRDRCCRRRRCCRRRRCRRRCRRCR 

 

http://web.cs.wpi.edu/~heineman/html/teaching_/cs110x/c14/Homeworks/C_chord.txt


Draft Version: 2/6/2014 

 

How To Get Started On This Assignment 
A template HW4.py file is provided to you with some sample functions already provided. 

Feel free to take the implementations in the provided HW3 solution, in case you do not have a working 

listAdd or generateSoundWave function. 

Much of the work for this assignment will be spent trying to understand the domain of sound waves and 

writing the appropriate Python code. In many ways, that is as it should be! The job of a programmer is 

more than learning a particular syntax. You need to know how to produce code relevant for a specific 

problem. Sometimes the code you write is only 5 lines of code (but it will be just the right five lines of 

code). 

Submit your HW4.py file using the web-based turnin system. As we have mentioned in class, only one of 

the team members needs to submit the assignment. But just make sure that something gets submitted! 

Change Log 
1. Refined the sample input (and output) for Question 8 

2.  

http://web.cs.wpi.edu/~heineman/html/teaching_/cs110x/c14/Homeworks/HW3_solution.py

