
Interface Automata

Luca de Alfaro
Dept. of Electrical Engineering

and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720

dealfaro@eecs.berkeley.edu

Thomas A. Henzinger
Dept. of Electrical Engineering

and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720

tah@eecs.berkeley.edu

ABSTRACT
Conventional type systems specify interfaces in terms
of values and domains. We presen t a light-weight
formalism that captures the temporal aspects of soft-
w are component interfaces. Speci�cally, w e use an
automata-based language to capture both input as-
sumptions about the order in whic hthe methods of
a component are called, and output guarantees about
the order in which the component calls external meth-
ods. The formalism supports automatic compatibility
checks bet w eeninterface models, and thus constitutes
a type system for component interaction. Unlike tra-
ditional uses of automata, our formalism is based on
an optimistic approach to composition, and on an al-
ternating approach to design re�nement. According to
the optimistic approach, tw o components are compat-
ible if there is some environment that can make them
w ork together. According to the alternating approach,
one in terface re�nes another if it has weak er input as-
sumptions, and stronger output guarantees. We show
that these notions have game-theoretic foundations that
lead to eÆcient algorithms for checking compatibility
and re�nement.

Categories and Subject Descriptors
D.2.1 [Softw are Engineering]: Requirements/Speci�-
cations; D.2.2 [Soft w are Engineering]: Design Tools
and T echniques|Modules and interfaces, Software li-
braries, State diagrams; D.2.4 [Soft w areEngineer-
ing]: Soft w are/Program Veri�cation|Formal methods;
F.3.1 [Logics and Meanings of Programs]: Speci-
fying and V erifyingand Reasoning about Programs|
Mechanic al veri�c ation, Speci�cation te chniques

General Terms
Component-based design

1. INTRODUCTION
The purpose of a modeling language is to capture cer-
tain aspects of a design. For hardware, modeling lan-
guages (called hardware description languages) provide
the basis for design, validation, and synthesis. For soft-
w are, modeling languages such as UML [12] are becom-
ing widely used in designand documen tation, but ex-
cept for v ery speci�c domains, they are either too infor-
mal or too heavy to be used e�ectively in v alidation.We
present a light-weight formalism for capturing temporal
aspects of soft w are component interfaces which are be-
yond the reach of traditional type systems. Speci�cally,
w e use an automata-based language to capture assump-
tions about the order in which the methods of a compo-
nent are called, and the order in which the component
calls external methods. Since our language is formal, it
can be used not only in design and documentation, but
also in validation, in particular, for checking that the
interfaces of tw o components are compatible. Since in-
terfaces are often much simpler than the corresponding
implementations, we believe that it is in this area where
formal methods can be most e�ectively used to aid in
softw are design.

The prevalent trend in softw are and system engineering
is towards component-b aseddesign. According to this
approach, new software designs are created by combin-
ing pre-existing modules with new software that pro-
vides both glue between the components, and new func-
tionalit y.Indeed, component-based design, and the use
of component libraries, are such standard concepts in
current softw are engineering that new programming lan-
guages, such as Java, come already supplied with their
component libraries, and the development of systems of
any sophistication would be unthink able without resort-
ing to libraries of components. The e�ectiv ereuse of
components requires languages for the documentation
and interface speci�cation of components, along with
methods for checking the compatibility of component
interfaces in a design. The formalism of Statecharts [4],
also used in UML, is widely used to document compo-
nent behavior. Light-weigh t constrain t-based languages
for component speci�cation have been presented in [5].
Automata-based speci�cations for component beha vior
ha ve been considered in [1, 8].Our formulation of inter-
face compatibility is related in various respects to [13],

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEC/FSE 2001, Vienna, Austria
© ACM 2001 1-58113-390-1/01/09…$5.00

109

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

which also considers the synthesis of component adap-
tors to bridge between incompatible interfaces.

We capture the temporal I/O behavior of a component
by an automaton. While we are not the �rst to pro-
pose an automata-based formalism for modeling, our
approach is, in a certain important sense, diametrically
opposed to the traditional approach. The traditional
approach to the modeling of a component that inter-
acts with an environment (namely, other components)
is pessimistic: the underlying assumption is that the
environment is free to behave as it pleases, and that
two components are compatible if no environment can
lead them into an error state. Hence, the pessimistic
approach considers two components compatible if they
can be used together in all systems. We believe that for
design purposes, where both the components and their
environment are being designed, an optimistic view is
more natural. Components are usually designed un-
der assumptions about the environment; when they are
composed, we should compose also their environment
assumptions. Accordingly, two components are compat-
ible if there is some environment that can make them
work together, simultaneously satisfying both of their
environment assumptions. Hence, under the optimistic
approach two components are compatible if they can be
used together in at least one design. We will demon-
strate that the optimistic view, which assumes a helpful
environment, leads to a simple, clean, and powerful the-
ory of interface automata, which are typically smaller,
and thus easier on the user, than the traditional pes-
simistic interface models, which must be prepared to
cope with all environments.

Our formalism of interface automata is syntactically
similar to the I/O automata of [9]. Interface automata
interact through the synchronization of input and out-
put actions, while the internal actions of concurrent au-
tomata are interleaved asynchronously. Input actions
are used to model procedures or methods that can be
called, and the receiving end of communication chan-
nels, as well as the return locations from such calls.
Output actions are used to model procedure or method
calls, message transmissions, the act of returning after
a call or method terminates, and exceptions that arise
during method execution. Components are designed un-
der assumptions about their environment; that is, the
design describes the behavior of the component only
under environments that satisfy the assumptions. For
example, the design of an object-oriented software com-
ponent may assume that the method calls occur in a
speci�c order, and it may behave as desired only in re-
sponse to such properly ordered calls. In similar fashion,
interface automata accept only some input behaviors
generated by the environment, and they describe the
component behavior under those inputs only. Unlike
I/O automata, which at every state must be receptive
towards every possible input action (the \pessimistic,"
or input-enabled , view), for interface automata, at ev-
ery state some inputs may be illegal. By not accepting
certain inputs, the interface automaton expresses the

assumption that the environment never generates these
inputs (the \optimistic," or environment-constraining ,
view). In this way, environment assumptions can be
used to encode restrictions on the order of method calls,
and on the types of return values and exceptions. By
capturing environment assumptions, and by freeing de-
signers from the obligation of specifying responses to in-
puts that cannot occur in the intended environment, in-
terface automata provide a concise and formal notation
that parallels the natural way of evolving a component-
based design.

The optimistic approach has several rami�cations on
the technical development of an interface modeling lan-
guage. In component-based design, one wants to hand
o� and re�ne an interface, ultimately towards an imple-
mentation, independent of the design of other compo-
nents. In the traditional, pessimistic view, where the
interface captures only the legal component behaviors,
re�nement means to choose and implement a particular
legal behavior. In the optimistic approach, the inter-
face captures not only the legal component behaviors
but also an assumption about the environment, in the
form of permissible environment behaviors. Re�nement,
then, means to choose among the legal component be-
haviors without restricting the permissible environment
behaviors. Mathematically speaking, re�nement acts
contravariantly on input assumptions and output guar-
antees: the former can be relaxed only; the latter can
be restricted only. This leads to a notion of alternating
simulation [2] as re�nement.

Second, the optimistic view implies a notion of interface
composition that leads to smaller compound automata
than the pessimistic view. If two interface automata are
composed, the result may contain error states , where
one automaton generates an output that is an illegal in-
put for the other automaton. While the standard pes-
simistic view would consider the two interfaces to be
incompatible, we follow again an optimistic approach:
just as each individual interface expects the environ-
ment to provide only legal inputs, so the compound in-
terface expects the environment to steer away from all
error states. The existence of a legal environment for the
composition of two interfaces indicates that the inter-
faces are compatible, i.e., that there is a way to use the
corresponding components together and, at the same
time, ensure that the environment assumptions of both
are met. The resulting composite interface automaton
combines not only the behaviors of the two component
interfaces, but also combines the environment assump-
tions of the components into the least restrictive com-
posite environment assumption under which the compo-
nents can work together. Algorithmically, the composite
automaton is constructed by pruning from the product
of the component automata all states from which the
environment cannot prevent an error state from being
entered in one or more steps. This algorithm solves a
game between the product automaton (which attempts
to get to an error state) and the environment (which
attempts to prevent this). An interesting special case

110

is that of single-threaded interface automata, used to
model systems in which only one thread of execution is
active at any given time. For these automata we intro-
duce a specialized notion of composition, for which the
product pruning leads to particularly big savings.

As a consequence of the pruning, the composition of
two interface automata has a nonempty set of states
i� the two automata are compatible. This underlines
a di�erence between the optimistic approach, exempli-
�ed by interface automata, and the usual pessimistic
approach. In the optimistic approach, composing two
components is conceptually complex (but computation-
ally linear time), because it requires the solution of a
game between the components and the environment,
but checking compatibility, once the composition has
been computed, is trivial. In particular, the optimistic
approach obviates the need for explicitly specifying con-
sistency properties between components. In contrast, in
the usual pessimistic approach, composing components
is conceptually simple, but checking for compatibility
requires human supervision for providing consistency
properties, and proof that they hold in the composed
system.

By enabling automatic compatibility checks between
component interfaces analogous to those a�orded by
conventional type systems, which focus on values and
domains, interface automata o�er a \type system for
component interaction," as propagated in [7].

2. A PREVIEW OF INTERFACE
AUTOMATA

We illustrate the basic features of interface automata by
applying them to the modeling of a software component
that implements a message-transmission service. The
component has a method msg , used to send messages.
Whenever this method is called, the component returns
either ok or fail. To perform this service, the compo-
nent relies on an interface to a communication channel
that provides the method send for sending messages.
The two possible return values are ack , which indicates
a successful transmission, and nack , which indicates a
failure. When the method msg is invoked, the compo-
nent tries to send the message, and resends it if the �rst
transmission fails. If both transmissions fail, the compo-
nent reports failure; otherwise, it reports success. The
interface automaton Comp modeling this component is
illustrated in Figure 1(b). The automaton Comp is not
receptive; its illegal inputs are used to specify assump-
tions about the environment. For example, the input
msg is accepted only in state 0. This represents the
assumption that, once the method msg is called, the
environment will wait for an ok or fail response before
issuing another call of msg .

Assume that the component Comp is used by a user
component that expects messages to be successfully
sent, and makes no provisions for handling failures. The
interface automaton User shown in Figure 1(a) models

such a component: after calling the method msg , it ac-
cepts the return value ok , but does not accept the return
value fail. The expectation that the return value is ok
is an assumption by the component Comp about its en-
vironment; that is, the component Comp is designed
to be used only with message-transmission services that
cannot fail.

In Figure 1(c) we present the product User
 Comp of
the two automata Comp and User . Each state of the
product consists of a state of User together with a state
of Comp. Each step of the product is either a joint msg
step, which represents the call of the method msg by
User , or a joint ok step, which represents the termina-
tion of the method msg with return value ok , or a step
of Comp calling the method send of the (unspeci�ed)
channel, or a step of Comp receiving the return value
ack or nack from the channel. Consider the following se-
quence of events. The component User calls the method
msg ; then Comp calls twice the method send and re-
ceives twice the return value nack , indicating transmis-
sion failure. This sequence of events brings us to state 6
of the product automaton, which corresponds to state 1
of User and state 6 of Comp. In state 6, the component
Comp tries to report failure by returning fail, but not
expecting failure, the component User does not accept
the return value fail in state 1. We declare the \unex-
pected" state 6 of the product automaton User
Comp
to be illegal , because if the environment assumption of
the component Comp is satis�ed by its environment,
then this state does not occur.

There are two ways of dealing with illegal states. The
standard \pessimistic" approach considers two inter-
faces incompatible if the product can reach illegal states.
In the example, the components User and Comp would
be incompatible, since state 6 is reachable in User

Comp, and User and Comp would be declared incom-
patible, because Comp does not by itself satisfy the en-
vironment assumption of User , namely, that every call
to msg returns the value fail .

The pessimistic approach is appropriate when the prod-
uct system is closed. However, the productUser
Comp
is again an open system, with an environment |the
communication channel| which provides ack and nack
values to User
Comp. By declaring User and Comp to
be incompatible, the pessimistic approach forecloses on
the possibility that the channel is helpful and makes the
two components work together. In fact, the pessimistic
approach rejects an open system if there is some en-
vironment under which it behaves incorrectly. In par-
ticular, the pessimistic approach fails to propagate the
environment assumption of User to its composition with
Comp.

In contrast, according to our optimistic approach User
and Comp are compatible. In fact, we consider two
components compatible if there is some environment
in which they work correctly: indeed, the environment
that provides input ack at state 4 ensures that the illegal

111

msg failok

ok?

msg!

0 1

(a) Interface automaton User

failmsg ok

6fail! nack?

send ack nack

0 1 2 3 4

5

send! send!

ack?ok!

nack?

ack?

msg?

(b) Interface automaton Comp

nack?6

send ack nack

0 1 2 3 4

5

send! send!

ack?

nack?

ack?

ok;

msg;

(c) User
 Comp. The illegal state of the product is depicted
as a square.

send ack nack

0 1 2 3 4

5

send! send!

ack?

nack?

ack?

ok;

msg;

(d) UserkComp

Figure 1: Interface automata. We enclose each automaton in a box, whose ports correspond to the
input and output actions. We append to the name of the actions the symbol \?" (resp. \!", \;") to
denote that the action is an input (resp. output, internal) action. An arrow without source denotes
the initial state of the automaton.

112

state 6 is not entered. Such environments, that prevent
illegal states from being reached, are called the legal
environments. The states of the product User
 Comp
from which the environment can ensure that no illegal
state is entered are called the compatible states ; in the
example, they are 0, 1, 2, 3, 4, and 5. The composition
UserkComp of the two interface automata is obtained
by restricting the product User
Comp to its compati-
ble states, as depicted in Figure 1(d). Note how restrict-
ing User
 Comp to its compatible states corresponds
to imposing an assumption on the environment, namely,
that calls to the methodmsg never return twice in a row
the value nack . Hence, when the two automata Comp
and User are composed, the assumption of User that
no failures occur is translated into the assumption of
UserkComp that no two consecutive transmissions fail.
The indicates how, under the optimistic approach, the
composition of the interface automata User and Comp
propagates to the environment of UserkComp the as-
sumptions that are necessary for the correct interaction
of User and Comp.

This example illustrates the deep di�erence between the
pessimistic and optimistic approaches. While the opti-
mistic approach considers many components compati-
ble which would be incompatible under the pessimistic
approach, there are of course components that cannot
work together even under the optimistic view, namely
those for which no legal environment exists. The com-
patibility check is performed by computing compatible
states, which amounts to solving a game between the
product automaton (which tries to enter illegal states)
and its environment (which tries to prevent this).

3. INTERFACE AUTOMATA
Definition 1. An interface automaton P =

hVP ; V
init
P ;AI

P ;A
O
P ;A

H
P ; TP i consists of the following

elements:

� VP is a set of states.

� V init
P � VP is a set of initial states. We require

that V init
P contains at most one state. If V init

P = ;,
then P is called empty.

� AI
P , A

O
P , and A

H
P are mutually disjoint sets of in-

put, output, and internal actions. We denote by
AP = AI

P [A
O
P [AH

P the set of all actions.

� TP � VP �AP � VP is a set of steps.

If a 2 AI
P (resp. a 2 AO

P , a 2 AH
P), then (v; a; v0) is

called an input (resp. output, internal) step. We denote
by T I

P (resp. T O
P , T H

P) the set of input (resp. output,
internal) steps. The interface automaton P is closed if
it has only internal actions, that is, AI

P = AO
P = ;;

otherwise, we say that P is open. An action a 2 AP is
enabled at a state v 2 VP if there is a step (v; a; v0) 2
TP for some v0 2 VP . We indicate by AI

P (v), A
O
P (v),

AH
P (v) the subsets of input, output, and internal actions

that are enabled at the state v, and we let AP (v) =
AI
P (v) [AO

P (v) [AH
P (v). Unlike I/O automata [9], an

interface automaton is not required to be input-enabled;
that is, we do not require that AI

P (v) = AI
P for all

states v 2 VP . The set A
I
P (v) of enabled input actions

speci�es which inputs are accepted at the state v; we call
the inputs in AI

P n AI
P (v) the illegal inputs at v. Also

note that an interface automaton is not required to be
non-blocking; that is, we do not require that AP (v) 6= ;
for all states v 2 VP . Blocking states can be used to
model terminating processes. The size of an interface
automaton P is de�ned by jP j = jVP j+ jTP j.

Example 1. The interface automaton User of Fig-
ure 1 has two input actions, ok and fail , one output
action, msg , and no internal actions. It has two states,
with state 0 being initial, and two steps, (0;msg ; 1) and
(1; ok ; 0).

Definition 2. An execution fragment of an in-
terface automaton P is a �nite alternating sequence
of states and actions v0; a0; v1; a1; : : : ; vn such that
(vi; ai; vi+1) 2 TP for all 0 � i < n. Given two states
v; u 2 VP , we say that u is reachable from v if there is
an execution fragment whose �rst state is v, and whose
last state is in u. The state u is reachable in P if there
exists an initial state v 2 V init

P such that u is reachable
from v.

In the de�nition of interface automaton, it is not re-
quired that all states are reachable. However, one is
generally not interested in unreachable states, and they
can be removed in linear time.

3.1 Compatibility and composition
We de�ne the composition of two interface automata
only if their actions are disjoint, except that an input
action of one may coincide with an output action of
the other. The two automata will synchronize on such
shared actions, and asynchronously interleave all other
actions.

Definition 3. Two interface automata P and Q are
composable if

AH
P \ AQ = ; AI

P \ A
I
Q = ;

AO
P \ AO

Q = ; AH
Q \ AP = ;:

We let shared(P;Q) = AP \ AQ.

Note that if two interface automata P and Q are com-
posable, then shared (P;Q) = (AI

P \ AO
Q) [(AO

P \ AI
Q).

We de�ne the composition of interface automata in
stages, de�ning �rst the product automaton P
 Q.
This product coincides with the composition of I/O au-
tomata [9], except that since P andQ are not necessarily
input-enabled, some steps present in P or Q may not
be present in the product.

113

Definition 4. If P and Q are composable interface
automata, their product P
Q is the interface automa-
ton de�ned by

VP
Q = VP � VQ

V
init
P
Q = V

init
P � V

init
Q

AI
P
Q = (AI

P [AI
Q) n shared(P;Q)

AO
P
Q = (AO

P [AO
Q) n shared (P;Q)

AH
P
Q = AH

P [AH
Q [shared(P;Q):

The set TP
Q of steps is de�ned in Figure 2.

Example 2. The product User
 Comp of the inter-
face automata User and Comp of Figure 1 is shown
in Figure 1(c). We have only depicted the reachable
states of the product. After each operation involv-
ing interface automata, such as product, we routinely
remove from the resulting automaton all unreachable
states. Note that state 6 has no outgoing edges, be-
cause fail 2 shared(User ;Comp), but the step (6; fail ; 0)
of Comp has no corresponding step in User .

Since interface automata are not necessarily input-
enabled, in the product P
Q of two interface automata
P and Q, one of the automata may produce an output
action that is an input action of the other automaton,
but is not accepted. The set Illegal(P;Q) of states of
P
Q where this happens are called the illegal states of
the product.

Definition 5. Given two composable interface au-
tomata P and Q, the set Illegal(P;Q) � VP � VQ of
illegal states of P
Q is de�ned in Figure 3.

Example 3. Referring again to the product
User
 Comp shown in Figure 1, we have
6 2 Illegal(User ;Comp), because the output step
(6; fail ; 0) of Comp has no corresponding input step in
User .

When the product P
Q is closed, we say that P and Q
are compatible if no illegal state of P
Q is reachable.
When P
Q is open, however, the fact that a state in
Illegal(P;Q) is reachable does not necessarily indicate
an incompatibility, because by generating appropriate
inputs, the environment of P
 Q may be able to en-
sure that the set Illegal(P;Q) is not entered. Such an
environment, which steers away from the illegal states,
is called a legal environment. The existence of a legal
environment indicates that there is a way to use the
interfaces P and Q together without giving rise to in-
compatibilities. A legal environment for R = P
 Q
needs to satisfy the following side conditions.

Definition 6. An environment for an interface au-
tomaton R is an interface automaton E such that (1) E

put tokenget token

send ack

send?

ack!

get token!

��

Æ

put token!

nack

(a) Channel

put token!get token!

msg;

(5; Æ)

(5; �) (2;
)

(0; �) (1; �) (2; �)

send;

ack;put token!

ok; get token!

(b) User
Comp
 Channel

Figure 4: A legal environment Channel for
(User ;Comp), and the product User
 Comp

Channel.

is composable with R, (2) E is nonempty, (3) AI
E = AO

R,
and (4) Illegal(R;E) = ;.

The second condition ensures that the environment does
not constrain the reachable states of R by having no ini-
tial state. The third and fourth conditions ensure that
the environment does not constrain R by not accept-
ing some of its output steps, and that the environment
generates only inputs to R that can be accepted by R.

Definition 7. Given two composable interface au-
tomata P and Q, a legal environment for the pair (P;Q)
is an environment for P
 Q such that no state in
Illegal(P;Q)� VE is reachable in (P
Q)
E.

Example 4. The interface automaton Channel shown
in Figure 4(a) is a legal environment for (User ;Comp),
because in the product (User
 Comp)
 Channel (see
Figure 4(b)), the state (6; u) is not reachable for any
u 2 f�; �;
; Æg.

114

TP
Q = f((v; u); a; (v0; u)) j (v; a; v0) 2 TP ^ a 62 shared (P;Q) ^ u 2 VQg

[f((v; u); a; (v; u0)) j (u; a; u0) 2 TQ ^ a 62 shared(P;Q) ^ v 2 VP g

[f((v; u); a; (v0; u0)) j (v; a; v0) 2 TP ^ (u; a; u0) 2 TQ ^ a 2 shared (P;Q)g:

Figure 2: De�nition of the steps of the product of two interface automata.

Illegal(P;Q) =

8<
:(v; u) 2 VP � VQ

�� 9a 2 shared (P;Q) :

0
@

a 2 AO
P (v) ^ a 62 AI

Q(u)
_

a 2 AO
Q(u) ^ a 62 AI

P (v)

1
A
9=
; :

Figure 3: De�nition of the illegal states of a product automaton.

We de�ne compatibility as the existence of a legal envi-
ronment.

Definition 8. Two interface automata P and Q are
compatible if they are nonempty, composable, and there
exists a legal environment for (P;Q).

Example 5. The two interface automata User (Fig-
ure 1(a)) and Comp (Figure 1(b)) are compatible, be-
cause the automaton Channel (Figure 4(a)) is a legal
environment for (User ; E).

The composition of two interface automata is obtained
by restricting the product of the two automata to the
set of compatible states, which are the states from which
the environment can prevent entering illegal states.

Definition 9. Consider two composable interface
automata P and Q. A pair (v; u) 2 VP � VQ of states
is compatible if there is an environment E for P
 Q
such that no state in Illegal(P;Q) � VE is reachable in
(P
Q)
 E from the state f(v; u)g � V init

E . We write
Cmp(P;Q) for the set of compatible states of P
Q.

Hence, we can rephrase the de�nition of compatibility
for interface automata as follows: two nonempty, com-
posable interface automata P and Q are compatible i�
their initial states are compatible, i.e., if V init

P �V init
Q �

Cmp(P;Q).

Definition 10. Consider two composable interface
automata P and Q. The composition PkQ is an in-
terface automaton with the same action sets as P
Q.
The states are VPkQ = Cmp(P;Q), the initial states

are V init
PkQ = V init

P
Q \ Cmp(P;Q), and the steps are
TPkQ = TP
Q \ (Cmp(P;Q)�APkQ �Cmp(P;Q)).

Example 6. In the automaton User
 Comp (Fig-
ure 1(c)), the states 0, 1, 2, 3, 4, and 5 are compatible.

The result of restricting User
 Comp to its compat-
ible states is the automaton UserkComp, depicted in
Figure 1(d). In general, the restriction to compatible
states may render some states unreachable. They can
then be removed from the composite automaton.

Recalling that two interface automata are compatible if
their initial states are compatible, the de�nition of com-
position yields the following alternative characterization
of compatibility:

Two interface automata P and Q are com-
patible i� (a) they are composable and
(b) their composition is nonempty.

This criterion will be used in our algorithmic check of
compatibility, based on the computation of automaton
composition. The composition of interface automata is
associative.

Theorem 1. For all interface automata P , Q, and
R, either both (PkQ)kR and Pk(RkQ) are unde�ned,
because some of the automata are not composable, or
(PkQ)kR = Pk(RkQ).

3.2 Discussion
An interface automaton represents both assumptions
about the environment, and guarantees about the spec-
i�ed component. The environment assumptions are
twofold: each output step incorporates the assumption
that the corresponding action is accepted by the en-
vironment as input; and each input action that is not
accepted at a state encodes the assumption that the en-
vironment does not provide that input. The component
guarantees correspond to sequences and choices of in-
put, output, and internal actions, as usual. When two
interface automata are composed, the composition op-
erator k combines not only the component guarantees,
as is the case in other component models, but also the
environment assumptions.

115

a

c;

c; a?

b?

c;

b

0

1

2

3

Figure 5: Interface automaton R. State 3 is not
reachable after composition with any environ-
ment for R.

One interesting note about interface automata is that
while some states may be reachable in an interface au-
tomaton R, they cannot be reached in any composition
of R with an environmentE. This may happen, because
the environment cannot observe the state of R, only its
input and output actions. Hence, in order to satisfy
condition (4) of the de�nition of environment, namely,
that R
 E contains no illegal states, the environment
must be conservative and provide an input to R only
if R accepts that input in all states in which it could
possibly be. Because of this, there may be reachable
states v of R such that for all environments E of R, no
state of the form (v; �) is reachable in the product R
E.
These states can, of course, be removed from R in order
to make R smaller. However, the best known algorithm
for �nding these states requires exponential time (and
polynomial space), and relies on an adaptation of the
subset construction of [11].

Example 7. Consider the interface automaton R of
Figure 5. State 3 of the automaton is not reachable
after composition with any environment for R. An en-
vironment for R can provide neither input a, nor input
b, to R. The reason is that, because of the internal
steps from state 0 to states 1 and 2, the environment
can never be sure that R is ready to accept these inputs.

Whenever two interface automata P and Q are compat-
ible, there is a particularly simple legal environment for
(P;Q), namely, the one that accepts all outputs of P
Q,
and that generates no inputs for P
Q: clearly, this en-
vironment avoids entering Illegal(P;Q) whenever possi-
ble. This points to a limitation of interface automata:
while the environment assumption of an automaton can
express which inputs may occur, it cannot express which
inputs must occur. Thus, the automaton that produces
no inputs is the best for showing compatibility. There
are several ways of enabling interface automata to spec-
ify inputs that must occur: among them, synchronicity,
adding fairness, or adding real-time constraints. Such
extensions are beyond the scope of this work.

3.3 Computing the composition
Given two interface automata P and Q, a pair (v; u) 2
VP �VQ is compatible if there is some environment un-
der which Illegal(P;Q) is not reachable in P
Q from
(v; u). As remarked above, the best environment corre-
sponds to accepting all outputs of P
Q, and generating
no inputs for P
 Q. On the basis of this observation,
the set Cmp(P;Q) can be computed by performing a
backward reachability analysis from Illegal(P;Q) which
traverses only internal and output steps, and removes
all states thus reachable. To present the algorithm, we
introduce the operator OHpre. Intuitively, for a set U of
states of an interface automaton R, the set OHpreR(U)
contains the states of R that can enter a state in U by
taking an internal or output step. Formally, the opera-
tor OHpreR : 2VR 7! 2VR is de�ned for all sets U � VR
by

OHpreR(U) = fv 2 VR j 9(v; a; u) 2 T O
R [T H

R : u 2 Ug:

The set Cmp(P;Q) can be computed by iterating the
operator OHpreP
Q, starting from Illegal(P;Q) until
no new states are found.

Algorithm 1.
Input: Interface automata P and Q.
Output: Cmp(P;Q).

Initialization: Let U0 = Illegal(P;Q).
Repeat: For k � 0, let Uk+1 = Uk [OHpreP
Q(Uk).
Until: Uk+1 = Uk.
Return: VP
Q n Uk.

Using this algorithm, the composition of two interface
automata can be computed by �rst pruning the incom-
patible states from the product, and then, for optimiza-
tion, removing any unreachable states. The following
theorem summarizes the complexity of deciding com-
patibility, and computing the composition, of interface
automata.

Theorem 2. Given two interface automata P and
Q, we can decide whether they are compatible, and we
can compute PkQ in time linear in jP j and jQj.

Since the composition of interface automata is associa-
tive, we can check whether n > 0 interface automata
P1, . . . , Pn are compatible by computing their com-
position P1k � � � kPn in a gradual fashion, constructing
(P1k � � � kPi�1)kPi for i = 1; 2; : : : ; n, and checking for
each i that the resulting composition is nonempty. The
eÆciency of this check lies in the fact that, in the com-
putation of (P1k � � � kPi�1)kPi, the incompatible states
are pruned as early as possible. This idea is closely
related to the use of games for the early detection of
errors in veri�cation [3]. We can further improve the
algorithm by composing the automata P1, . . . , Pn in a
tree-like fashion, rather than in a linear order.

116

nackacksend

msg failok

1' 3'

5'

6'

send! send!

ack?ok!

fail! nack?

nack?

ack?

0'

ack?

nack?

fail!

ok!

send!

10'

9'

7' 2' 4'8' msg?

once

once?

Figure 6: Interface automaton QuickComp, o�ering retry-once and retry-twice message transmission.

4. REFINEMENT
The re�nement relation aims at formalizing the relation
between abstract and concrete versions of the same com-
ponent, for example, between an interface speci�cation
and its implementation. In the input-enabled setting,
re�nement is usually de�ned as trace containment or
simulation [10]; this ensures that the output behaviors
of the implementation are behaviors that are allowed
by the speci�cation. However, such de�nitions are not
appropriate in a non-input-enabled setting, such as in-
terface automata: if one requires that also the set of
legal inputs of the implementation is a subset of the
inputs allowed by the speci�cation, then the implemen-
tation could be used in fewer environments than the in-
terface speci�cation. To illustrate the shortcomings of
the standard de�nition, consider the interface automa-
ton QuickComp of Figure 6. This automaton repre-
sents a component that provides two services: the �rst
is the try-twice service msg provided also by the au-
tomaton Comp of Figure 1(b); the second is a try-once-
only service once designed for messages that are useless
when stale. Clearly, we would like to de�ne re�nement
so that QuickComp is a re�nement of Comp, because
QuickComp implements all services provided by Comp,
and is consistent with Comp in their implementation.
The language of QuickComp, however, is not contained
in the language of Comp; indeed, once is not even an
action of Comp. Instead, we must de�ne re�nement in
a contravariant fashion: the implementation must allow
more legal inputs, and fewer outputs, than the speci�-
cation.

We choose a contravariant re�nement relation in the
spirit of simulation, rather than language contain-
ment. This leads to the de�nition of re�nement as
alternating simulation [2]. Roughly, an interface au-
tomaton P re�nes an interface automaton Q if all input
steps of Q can be simulated by P , and all the output
steps of P can be simulated by Q. The precise de�nition

must take into account the fact that the internal steps
of P and Q are independent. For this, we need some
preliminary notions. The "-closure of a state v consists
of the set of states that can be reached from v by taking
only internal steps.

Definition 11. Given an interface automaton P
and a state v 2 VP , the set "-closureP (v) is the smallest
set U � VP such that (1) v 2 U and (2) if u 2 U and
(u; a; u0) 2 T H

P , then u0 2 U .

The environment of an interface automaton P cannot
see the internal steps of P . Consequently, if P is at a
state v, then the environment cannot distinguish be-
tween v and any state in "-closureP (v). In particu-
lar, the environment must be able to accept all out-
put actions in ExtEnOP (v), because P can issue these
outputs without any forewarning to the environment.
Conversely, the environment can safely issue an action
a as input to P only if a is accepted at all states in
"-closureP (v), because P could have transitioned to any
of these states, unbeknownst to the environment. This
motivates the following de�nition.

Definition 12. Consider an interface automaton P ,
and a state v 2 VP . We let

ExtEnOP (v) = fa j 9u 2 "-closureP (v): a 2 AO
P (u)g

ExtEnIP (v) = fa j 8u 2 "-closureP (v): a 2 AI
P (u)g

be the sets of externally enabled output and input ac-
tions, respectively, at v.

The following de�nition introduces an abbreviation for
the set of states that are reachable by taking externally
enabled actions.

117

Definition 13. Consider an interface automaton P
and a state v 2 VP . For all externally enabled input and
output actions a 2 ExtEnIP (v) [ExtEnOP (v), we let

ExtDestP (v; a)

= fu0 j 9(u; a; u0) 2 TP : u 2 "-closureP (v)g:

Using this notation, we are ready to de�ne alternating
simulation on interface automata.

Definition 14. Consider two interface automata P
and Q. A binary relation � � VP � VQ is an
alternating simulation from Q to P if for all states v 2
VP and u 2 VQ such that v � u, the following conditions
hold:

1. ExtEnIP (v) � ExtEnIQ(u) and ExtEnOQ(u) �

ExtEnOP (v).

2. For all actions a 2 ExtEnIP (v) [ExtEnOQ(u) and
all states u0 2 ExtDestQ(u; a), there is a state v0 2
ExtDestP (v; a) such that v0 � u0.

Condition 1 expresses the input-output duality between
states v � u in the alternating simulation relation: all
externally enabled inputs of v are also externally en-
abled in u, and conversely, all externally enabled out-
puts of u are externally enabled in v. Condition 2 re-
cursively propagates the simulation relation: all steps
from u that correspond to externally enabled actions
can be matched by steps from v. This de�nition of al-
ternating simulation is more involved than the one of [2]
because it deals with internal steps. In the example of
Figures 1(b) and 6, there is an alternating simulation
that relates i with i0, for i 2 f0; 1; 2; 3; 4; 5; 6g.

Definition 15. The interface automaton Q re�nes
the interface automaton P , written P � Q, if (1) AI

P �
AI
Q and AO

P � AO
Q, and (2) there is an alternating sim-

ulation � from Q to P , a state v 2 V init
P , and a state

u 2 V init
Q such that v � u.

Note that unlike in standard simulation, the \typing"
condition (1) is contravariant on the action sets. The
de�nition of re�nement captures a simple kind of sub-
classing: if P � Q, then the implementation Q is able
to provide more services than the speci�cation P , but
it must be consistent with P on the shared services.
Re�nement between interface automata is a preorder
(i.e., re
exive and transitive).

Theorem 3. For all interface automata P , Q, and
R, we have P � P , and if P � Q and Q � R, then
P � R.

The following theorem states two important properties
of re�nement between interface automata. First, re�ne-
ment and compatibility are related as follows: we can
always replace a component P with a more re�ned ver-
sion Q such that P � Q, provided that Q and P are
connected to the environment by the same inputs. The
side condition is due to the fact that if the environment
were to provide inputs for Q that are not provided for
P , then it would be possible that new incompatibili-
ties arise in the processing of these inputs. For software
components, this property is a statement of sub-class
polymorphism: we can always substitute a sub-class for
a super-class, provided no new methods of the sub-class
are used. In general, this property captures the essence
of component-based design: the designer of the environ-
ment (i.e., the other system components) needs to en-
sure only compatibility with the component speci�ca-
tion P , and in this way guarantees compatibility with
the component implementation Q. Second, re�nement
is compositional : in order to check if PkP 0 � QkQ0 it
suÆces to check both P � Q and P 0 � Q0. Since the
latter checks involve smaller automata, they are more
eÆcient.

Theorem 4. Consider three interface automata P ,
Q, and R such that Q and R are composable, and AI

Q \

AO
R � AI

P \A
O
R. If P and R are compatible and P � Q,

then Q and R are compatible and PkR � QkR.

The set of alternating simulations between two inter-
face automata is closed under union. Hence, there is a
unique alternating simulation from Q to P that is max-
imal in the partial order induced by set inclusion. To
check whether P � Q, it thus suÆces to compute this
maximal alternating simulation, and check if it relates
the initial states of P and Q. The maximal alternat-
ing simulation can be computed by starting from the
relation VP � VQ and iteratively removing pairs, until
either the computed relation satis�es the conditions of
an alternating simulation, or no pairs are left, in which
case there is no alternating simulation. This procedure
is analogous to the one presented in [2] for alternating
simulation relations between game structures.

Algorithm 2.
Input: Interface automata P and Q.
Output: The unique maximal alternating simulation
from Q to P .

Initialization: Let �0 = VP � VQ.
Repeat: For k � 0, de�ne �k+1 � �k by

v �k+1 u if v �k u and conditions 1 and 2
of De�nition 14 are satis�ed by v and u,
with � replaced by �k.

Until: �k+1 = �k.
Return: �k.

From the hardness results on ordinary simulation [6] we
have the following theorem, analogous to a result of [2].

118

Theorem 5. Checking re�nement between interface
automata is PTIME-complete.

5. SINGLE-THREADED INTERFACE
AUTOMATA

When there is only one active thread of control in a
system, we can take advantage of this fact by providing
specialized de�nitions of interface automata and com-
position. These single-threaded versions of interface au-
tomata give rise to smaller automata for composite sys-
tems.

Definition 16. A single-threaded interface automa-
ton (STIA) P is an interface automaton that satis�es
the following conditions:

1. The set VP of states is partitioned into two disjoint
sets VP = V O

P [V I
P . The states in V O

P are called
running, because only internal and output actions
are enabled: for all v 2 V O

P , we have AI
P (v) = ;.

The states in V I
P are called waiting, because only

input actions are enabled: for all v 2 V I
P , we have

AO
P (v) = AH

P (v) = ;.

2. All output steps must lead to waiting states: for
all (u; a; v) 2 T O

P , we have v 2 V I
P . Conversely,

only output steps can lead to waiting states: for
all v 2 V I

P and all (u; a; v) 2 TP , we have a 2 AO
P .

Condition 1 rules out states where there is a choice be-
tween output/internal actions (which are caused by the
automaton advancing a thread of control) and input ac-
tions (which are caused by some other automaton ad-
vancing a thread of control). The running states indi-
cate ownership of the single thread of control; the wait-
ing states indicate non-ownership. Condition 2 ensures
that an STIA waits for an input precisely after issu-
ing an output action; this is because if there is a single
thread of control, then each output step relinquishes
that thread.

Definition 17. Two STIAs P and Q are
composable if (1) they are composable when con-
sidered as interface automata, and (2) at most one of
the initial states is running; that is, V init

P � V I
P or

V init
Q � V I

Q. Two STIAs are compatible if they are
composable as STIAs, and compatible when considered
as interface automata.

In the de�nition of single-threaded compatibility, we do
not need a restriction to single-threaded environments,
because the \optimal" environment, which issues no
outputs, has only waiting states, and is therefore single-
threaded. Together, these de�nitions ensure that in ev-
ery reachable state of a composition of STIAs, at most

one of the components is in a running state. The com-
position PkQ of two compatible STIAs P and Q is not
necessarily an STIA. This is because PkQ may contain
reachable states v where both input and output actions
are enabled. However, these input actions are never
taken if PkQ is composed only with other STIAs: since
one of P or Q is running at v, no other STIA can be
running and cause the input actions to be taken. The
theorem below makes this statement precise.

Theorem 6. Consider two compatible STIAs P and
Q, a state v 2 VPkQ, and two actions a; b 2 APkQ(v)

with a 2 AI
PkQ and b 2 AH

PkQ [A
O
PkQ. If R is an STIA

compatible with PkQ such that (PkQ)kR is closed, then
for all states u 2 VR we have a 62 A(PkQ)kR(v; u).

Hence we introduce a special version of composition for
STIAs, called single-threaded composition, which prunes
the input actions that occur at states where internal or
output actions are also enabled.

Definition 18. Consider two composable STIAs P
and Q. The single-threaded composition P jjjQ is ob-
tained from PkQ by �rst removing all steps (v; a; u) 2
T I
PkQ for which AO

PkQ(v) [A
H
PkQ(v) 6= ;, and then re-

moving all states that become unreachable from V init
PkQ.

Single-threaded composition is again associative. In
Figure 7 we illustrate that single-threaded composition
may lead to a substantial reduction in the size of the
state space. By performing the single-theaded pruning
on-the-
y during the product construction, it is possi-
ble to construct P jjjQ without constructing the entire
reachable state space of PkQ. The following theorem in-
dicates that the single-threaded composition of STIAs
yields STIAs, and that ordinary and single-threaded
composition give rise to the same notion of compati-
bility.

Theorem 7. For composable STIAs P and Q, the
single-threaded composition P jjjQ is an STIA. Further-
more, if PkQ is nonempty, then P jjjQ is nonempty.

6. ACKNOWLEDGMENTS
We thank Edward A. Lee, Xiaojun Liu, Freddy Mang,
and Yuhong Xiong for fruitful discussions. This research
was supported in part by the AFOSR MURI grant
F49620-00-1-0327, the DARPA MoBIES grant F33615-
00-C-1703, the MARCO GSRC grant 98-DT-660, the
NSF Theory grant CCR-9988172, and the NSF ITR
grant CCR-0085949.

7. REFERENCES
[1] R. Allen and D. Garland. Formalizing

architectural connection. In Proc. 16th IEEE
Conf. Software Engineering, pages 71{80, 1994.

119

a

c
b;

a?

c!

(a) P

f

d? e;

f !

d

(b) Q

d? e;

c! c! c!

d?

d?

b;

a?

e;

e;

a? a?

b;b;

f !

f !

f !

a

f

c

d

(c) PkQ

a

f

c

d

d? e;

b;

a?

f !

c!

(d) P jjjQ

Figure 7: Single-threaded interface automata P
and Q, their composition PkQ, and their single-
threaded composition P jjjQ. The steps of the
composition PkQ are connected on a toroidal
topology.

[2] R. Alur, T. Henzinger, O. Kupferman, and
M. Vardi. Alternating re�nement relations. In
Concurrency Theory, Lecture Notes in Computer
Science 1466, pages 163{178. Springer-Verlag,
1998.

[3] L. de Alfaro, T. Henzinger, and F. Mang.
Detecting errors before reaching them. In
Computer-Aided Veri�cation, Lecture Notes in
Computer Science 1855, pages 186{201.
Springer-Verlag, 2000.

[4] D. Harel. Statecharts: A visual formalism for
complex systems. Science of Computer
Programming, 8:231{274, 1987.

[5] D. Jackson. Enforcing design constraints with
object logic. In Static Analysis Sumposium,
Lecture Notes in Computer Science 1824, pages
1{21. Springer-Verlag, 2000.

[6] O. Kupferman and M. Vardi. Veri�cation of fair
transition systems. Chicago J. Theoretical
Computer Science, 2, 1998.

[7] E. Lee and Y. Xiong. System-level Types for
Component-based Design. Technical Memorandum
UCB/ERL M00/8, Electronics Research Lab,
University of California, Berkeley, 2000.

[8] N. Leveson. System Safety and Computers.
Addison-Wesley, 1995.

[9] N. Lynch and M. Tuttle. Hierarcical correctness
proofs for distributed algorithms. In Proc. 6th
ACM Symp. Principles of Distributed Computing,
pages 137{151, 1987.

[10] R. Milner. An algebraic de�nition of simulation
between programs. In Proc. 2nd International
Joint Conference on Arti�cial Intelligence, pages
481{489. The British Computer Society, 1971.

[11] J. Reif. The complexity of two-player games of
incomplete information. J. Computer and System
Sciences, 29:274{301, 1984.

[12] J. Rumbaugh, G. Booch, and I. Jacobson. The
UML Reference Guide. Addison-Wesley, 1999.

[13] D. Yellin and R. Strom. Protocol speci�cations
and component adapters. ACM Trans.
Programming Languages and Systems, 19:292{333,
1997.

120

