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Abstract. At the second workshop on feature interactions, we proposeda state-
based model for specifying features and proposed reachability-analysis algorithms
for detecting various types of feature interactions. This paper is an evaluation of our
approach with respect to the Bellcore benchmark of feature interactions.

1 Introduction

A featureis a sub-program that adds functionality to an existing software system. A feature
interactionoccurs when the addition of a new feature affects the behavior of existing services
and features. That is, there is an interaction between featuresf andg if featuref behaves
one way wheng is present and another way when featureg is absent. Most software develop-
ers associate ‘feature interactions’ with unintended interactions between features that were
thought to be unrelated. However, since the purpose of a feature is to modify or enhance
functionality, features by definition interact; at the very least, a new feature is expected to
interact with those features and/or services whose functionality is intentionally modified by
the new feature. Thus, the problem of detecting feature interactions is twofold: we want to
validate specified interactions and to detect unspecified interactions.

At the second workshop on feature interactions [5], we proposed graphical and tabular no-
tations, based on a state-transition model, for specifying the functional behaviorof telephone
services and features. We also presented algorithms for composing feature specifications and
for detecting certain types of interactions. Since then, we have developed these ideas into a
suite of prototype tools that support automated detection of feature interactions [1,16, 15].

In this paper, we evaluate our approach to feature specification and interaction detection
with respect to a benchmark of feature interactions, published by Bellcore [6]. We have only
attempted to specify one of the six services listed in the benchmark: PlainOld Telephone
Service (POTS). In addition, we found we were able to specify 15 of the 19 features used in
the benchmark, and were able to detect 11 of the 23 interactions, with the hope of eventually
being able to detect 15 interactions.

2 Specification Model

The behaviors of features are modelled as state transition machines (STMs), where each
transition is triggered by a single input event [5]. Each feature is specifiedindependently
of other features. Multiple STM’s can be composed together to form another STM, which
represents the reachability graph [1, 16, 15]. During the composition, tests for detecting
interactions are run in each reachable state.�This research has been supported by Natural Sciences and Engineering Research Council of Canada, with matching funds from Nortel.



Table 1: Descriptions of Events and Assertions

Events and Assertions Descriptions
Token Events+Atoken, *Atoken - Agent Token Events:tokens passed down from or up to the agent+Rtoken, *Rtoken - Remote Token Events:tokens passed down from or up to the remote user
State Transition Events!O f - Enable Event: featuref is ready to become active!O fS(e) - Activation Event: featuref has become active and is in state S

S1!R fS2(e) - RequestStateChange Event:featuref requests to transition from S1 to S2gS1!M fS2(e) - ModifyStateChange Event:featureg forcesf to transition from S1 to S2
S1!O fS2(e) - OccurredStateChange Event:featuref has made a transition from S1 to S2

Sibling Events
S1!O P (f)S2 - Parallel Transition Event: featuref of the sibling machine is in state S2)P (f)token,(P (f)token - Parallel Input Event: tokens passed from or to sibling feature
NewCallf (BCM) - NewCall Event: start a new stack with basic service BCM and featuref

Internal Events.fevent - Internal Event: internally generated event by featuref� - Wildcard state or token�A - Assertion raised: property A is asserted to be true, and will continue to be
asserted until explicitly un-asserted

!A - Assertion lowered:property A is un-asserted

2.1 Specification Notation

Features are specified as State Transition Machines using a tabular notation. Each row in the
table represents a transition from an old state to a new state, due to the occurrence of an input
event. As a side effect of the transition, an output event might be issued or an assertion raised
(e.g., the assertion of an assumption). A featuref can control the behavior of a second featureg in two ways: it can communicate with the second feature via signal passing (Token events).
Alternatively, it can control behavior by monitoring, rejecting, or modifying state transitions
made by the second feature (Activation event and StateChange events). Descriptions of all
the events and assertions defined in the notation are given in Table 1.

In accordance with the Advanced Intelligent Network (AIN) architecture,the originating
end of a call (called the Originating Call Model, or simply OCM) and the receiving end
of a call (called the Terminating Call Model, or simply TCM) are modelledas separate,
communicating STMs. If a featuref is intended to modify the behavior of a basic call,
then we write a specification off that modifies an OCM and a different specificationf 0 that
modifies a TCM.

The specifications of the Call Forwarding feature are given in Tables 2 and 3. Call For-
warding incoming (CF1) modifies the behavior of a call received by a subscriber who has
invoked the CF feature; that is, it modifies a TCM (Table 2). Call Forwardingoutgoing (CF2)
spawns the forwarded call; it imitates the OCM in a call from the subscriber who invoked CF
to the forwarded number. CF1 suspends the TCM of the initial call in stateAuthTermination,
thereafter simulating the TCM’s functionality. CF2 suspends the OCM of the forwarded call
in stateAuthOrigAtt, thereafter simulating the OCM’s functionality. Data is passed between
CF1 and CF2 as parallel tokens. Thus, if a user A calls a subscriber B, who has forwarded all
calls to user C, the CF machines act as intermediaries that pass signals between A and C.

2.2 Levels of Specification and Composition

Architecturally, call configurations are modelled at four different levels: Feature, Stack, Call,
andCall-Group. At each level, the model is divided into theenvironmentand thesystem.
Thesystemrefers to the part of the model that is of particular interest (enclosed in a dotted
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State Input Event Output Event NewState ResourceAssertions
Ready !O TCMAuthTermination(+RTerminationAttempt) Receiving
Receiving AuthTermination!R TCMHuntingFacility(.TCMCallPresented)NewCallCF (OCM),*AShortAlert WaitSibling

AuthTermination!O TCMException(.TCMTerminationDenied) Exception�!O TCMException(�) Null�!O TCMNull(�) Null
WaitSibling�!O P (CF )Originated (P (CF )OriginationAttempt.s Forwarding+A� WaitSibling�!O TCMException(�) Exception�!O TCMNull(�) Null�!O P (CF )Null CFAuthTermination!M TCMNull(+ADisconnect)Null
Forwarding)P (CF )CallDelivered *RCallDelivered,*AAlert Alerting)P (CF )Answered *RAnswered Connected !lconn(t,d))P (CF )CalledPartyBusy *RCalledPartyBusy Exception)P (CF )CallCleared *RCallCleared Exception�!O TCMException(�) Exception+RCallCleared �forward� Null�!O TCMNull(�) Null+A� Forwarding
Alerting )P (CF )Answered *RAnswered Connected !lconn(t,d))P (CF )CalledPartyBusy *RCalledPartyBusy Exception)P (CF )CallCleared *RCallCleared Exception�!O TCMNull(�) Null+A� Alerting
Connected)P (CF )CallCleared *RCallCleared ReleasePend�!O TCMNull(�) Null+A� Connected
ReleasePend)P (CF )CalledPartyReconnect *RCalledPartyReconnect Connected+RReleaseTimeout CFAuthTermination!M TCMNull(+RCallCleared)Null�!O TCMNull(�) Null+A� ReleasePend
Exception �!O P (CF )Null CFAuthTermination!M TCMNull(+RCallCleared)Null�!O TCMNull(�) Null+A� Exception
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State Input Output Event NewState ResourceAssertions
Ready !O OCMAuthOrigAtt(�) SetUp
SetUp AuthOrigAtt!R OCMCollectInfo(.OCMOrig) Originated�!O OCMException(�) Exception�!O P (CF )Null CFAuthOrigAtt!M OCMNull(+ADisconnect) Null�!O OCMNull(�) Null
Originated )P (CF )OriginationAttempt.t SelectRoute�!O P (CF )Null CFAuthOrigAtt!M OCMNull(+ADisconnect) Null+A� Originated
SelectRoute.CFRouteSelected AuthCall.CFNetworkBusy *ANetworkBusy Exception�!O P (CF )Null CFAuthOrigAtt!M OCMNull(+ADisconnect) Null+A� SelectRoute
AuthCall .CFCallSetupAuthorized *RCallRequest SendCall.CFCallSetupDenied *ACallSetupDenied Exception�!O P (CF )Null CFAuthOrigAtt!M OCMNull(+ADisconnect) Null+A� AuthCall
SendCall +RCallDelivered (P (CF )CallDelivered Alerting+RAnswered (P (CF )Answered Connected �lconn(t,d),�pconn(s,d)+RCalledPartyBusy (P (CF )CalledPartyBusy Exception+RCallCleared (P (CF )CallCleared,CFAuthOrigAtt!M OCMNull(+ADisconnect)Null�!O P (CF )Null *RCallCleared,CFAuthOrigAtt!M OCMNull(+ADisconnect) Null+A� SendCall
Alerting +RAnswered (P (CF )Answered Connected �lconn(t,d),�pconn(s,d)+RCalledPartyBusy (P (CF )CalledPartyBusy Exception+RCallCleared (P (CF )CallCleared Exception�!O P (CF )Null *RCallCleared,CFAuthOrigAtt!M OCMNull(+ADisconnect) Null+A� Alerting
Connected +RCallCleared (P (CF )CallCleared ReleasePend�!O P (CF )Null *RCallCleared,CFAuthOrigAtt!M OCMNull(+ADisconnect) Null !lconn(t,d), !pconn(t,d)+A� Connected
ReleasePend+RCalledPartyReconnect (P (CF )CalledPartyReconnect Connected�!O P (CF )Null *RCallCleared,CFAuthOrigAtt!M OCMNull(+ADisconnect) Null !lconn(t,d), !pconn(t,d)+A� ReleasePend
Exception �!O P (CF )Null CFAuthOrigAtt!M OCMNull(+ADisconnect) Null+A� Exception
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rectangle in the diagrams, please see Figures 1a and 1b for examples) and theenvironment
refers to the elements in the model with which the system interacts (everything outside of the
dotted rectangle). Each architectural level focuses on a particular aspect of the configuration.

The feature level describes the behavior of an individual feature or service. Aservice
is a stand-alone functionality that is complete in itself. Figure 1a shows our model of the
Plain Old Telephone Service (POTS) which provides basic call processing activities. The
systems of interest here are the two ends of POTS: OCM and the TCM. The environment
for each system is the human user of the system (the agent) and the connection to the other
service (the remote user). That is, each basic call model interacts with its agent and with its
remote counterpart. Afeature, on the other hand, is an addition or modification to an existing
service; it cannot stand by itself. A feature modifies the behavior of the basic service by
acting as a mediator between the basic call model’s environment and the basic call model
(Figure 1b). Information passed from the basic call model’s environment is firstseen and
possibly modified by the feature before it is passed to the basic call model.

Thestacklevel describes the behavior of a single end of a call and represents the compo-
sition of all the features activated on that end of the call (Figure 2). The feature at the top of
the stack is said to have the highest priority in the stack, since it is the first to intercept inputs
from the environment and the last to modify outputs to the environment. For the same reason,
the feature at the bottom of the stack (the basic service) is said to have the lowest priority.
Within the system of a stack, communication among the features consists oftoken eventsand
state transition events. Token events represent data passed between adjacent features in the
stack. State transition events represent requests to transition to a newstate or notifications of
a transition made (higher priority features can control lower priority features by rejecting or
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modifying state transition requests). At the stack composition level, communication among
features in a stack is processed until all issued token events and state transition events are
resolved.

The call level describes the behavior of a call. It is the composition of two stacks, each
representing an end of the call, connected by a communication channel (Figure 3). Thecaller
and the callee communicate by passingremote token events, which are designated for the
remote user. Remote token events from one stack are passed as input to the other stack.

Finally, the behavior of multiple calls involving common users is depicted as acall-group,
and represents the composition of several call specifications (see Figure 4).A feature in-
volved in multiple calls, such as Call Waiting or Three-Way-Calling, would have a represen-
tative feature specification in each of the user’s stack (shown in greyin Figures 3 and 4); such
features are calledsibling featuresand can communicate viasibling events.

3 Detection of Interactions

During the composition, each reachable state is tested to determine if an interaction can occur
at that state. Composition and detection algorithms have been implemented, andwe are able
to automatically detect four types of interactions: control modification, data modification,
resource contention and unreachable interactions. We have provided a basis for detecting
a fifth type of interaction, assertion violation, for which an analysis algorithmis currently
being implemented. Examples of these interactions are discussed below. The examples are
taken from the Bellcore Benchmark [6] (discussed in Section 4) and the example numbers
given in [6] are referenced.

3.1 Control Modifications

A control modification interaction occurs when one feature affects the flow-of-control in
another feature. This can be done explicitly, by forcing the second feature to transition to a
new state (which is only possible if the two features execute in the same feature stack); or
implicitly, by intercepting, modifying or introducing data sent to the second feature.

3.1.1 Control of tokens
Features can communicate with each other by passing tokens. Since token eventscan trigger
features’ transitions, behaviors of features can be altered by interceptingthe tokens passed to
the features. When a feature in a stack receives a token, it can either pass it unchanged to the
next feature, pass a modified token to the next feature, or consume the token by not passing
it on. Passing a received token allows other features to react to the token.Consuming a token
in effect prevents features from reacting to this token. For example, using the HOLD feature,
a user can press the hold button and then put the receiver on hook without disconnecting the
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call. Essentially, HOLD intercepts the Disconnect token, thereby preventing the Basic Call
Model from receiving the Disconnect request and ending the call. This type of interaction
is detected when more than one feature in a feature stack is ready to input thesame token, a
high-priority feature consumes or alters the token before it reaches other features in the stack.

3.1.2 Control of features’ state-transitions
A feature can also control another feature’s behavior by denying or modifying a transition
request. Before a feature makes a transition, permission must be obtained fromall features
that have higher priority. When a higher priority feature receives a state-transition request
from a lower priority feature, it can either grant permission, deny permission, or force the re-
questing feature to make an alternate transition. This type of interaction isdetected whenever
a state-transition request is denied or modified. Since state-transition requests and events are
only passed among features executing in the same stack, we only search for this interaction
during composition of a stack.

A side effect of disallowing a state-transition is that the output events (i.e. output tokens)
associated with the transition do not occur. This type of interaction is detected when a denied
or modified state-transition would have output one or more tokens.

Example :Call Waiting and Automatic CallBack (No. 13)
Call Waiting (CWT) enables a user to receive and answer a second call while the phone is
busy. This is achieved by preventing the Terminating Call Model (TCM) of the second call
from entering state Exception and sending a Busy token to the caller. Instead, CWT will
determine whether facilities exist to support the call, and if so, instruct the TCM to set up the
call. Automatic CallBack (ACB) helps a caller to eventually establish a connection to a party
that is currently busy. If a user A calls B and gets a busy signal, then A can activate ACB,
which will monitor B’s phone line. When B hangs up, the switch will ring A; if A picks up,
the switch will automatically ring B and set up a connection.

Suppose user A has ACB and user B has CWT, as shown in Figure 5. A calls B while
B is talking to another user C. Although B is busy, A will not be able to activate ACB
because A’s feature stack will not receive a Busy token from B’s stack. There are actually
two control modification interactions here. One is the explicit interaction of CWT denying a
state-transition in the TCM (the transition to the Exception state). Thesecond is an implicit
interaction that occurs because the Busy token, which would have been output by the denied
state-transition, is not sent.

3.2 Data Modifications

A data modification interaction occurs when a token received by one feature has been mod-
ified by another. When a feature receives a token, it has the ability to modify its values. A
question mark ‘?’ is used to indicate when a token value has been modified. A data modifi-
cation interaction is detected when a feature accepts a token that containssymbol ‘?’.

Example :Call Number Delivery Blocking and Call Number Delivery (No. 16)
Call Number Delivery (CND) allows the callee to see the caller’s phonenumber. Call
Number Delivery Blocking (CNDB) modifies the caller’s number in the CallRequest to-
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ken so that the real number is not delivered. Suppose user A, who has CNDB, calls user
B, who has CND. The CNDB feature modifies A’s number so that B’s stack receives token+RCallRequest?origin instead of token+RCallRequest.origin (please see Figure 6). At this
point, a data modification interaction is detected.

3.3 Resource Contentions

A resource contention interaction occurs when the number of requested resources isgreater
than the number of resources available. This is detected by counting the number of resources
currently used by each user during the call process. When the number of allocated resources
is equal to the number of available resources, an additional request will resultin a resource
contention interaction.

Example :Three-Way-Calling and Call Waiting (No. 2b)
Both Three-Way-Calling (3WC) and Call Waiting (CWT) require the use of a resource known
as a bridge. 3WC uses a bridge to support origination of a second call, and CWT uses a bridge
to support the receipt of a second call. However, the switch only allocates 1bridge to each
telephone line card. Suppose a user A subscribes both CWT and 3WC (please see Figure 7).
Suppose further that A is talking with B, and uses CWT to accept a phone call from C.A
resource contention will occur if A subsequently attempts to invoke 3WC.

3.4 Reachability

A reachability interaction occurs when a state in a feature’s specification becomes unreach-
able after the composition. This is detected by comparing the set of reachable states before
and after the composition. A reachable state might appear to be unreachable if it becomes
an intermediate state in the composition. More commonly, a state is unreachable because the
transition(s) into the state has been explicitly denied or its input event neveroccurs.

Example :Call Forwarding and Call Forwarding (No. 17)
Suppose user A has Call Forwarding (CF) and has forwarded their calls to user B.Suppose
B also has CF and has forwarded their calls to A. If a user calls A, the call is forwarded to
B, then forwarded to A, then forwarded to B and so on (see Figure 8). This interaction is
detected as a reachability interaction because many of the normally reachable states in the
underlying call models are never reached.

3.5 Assertion Violations

An assertion-violation interaction occurs when the set of currently raisedassertions is un-
satisfiable. For each reachable state, the composition algorithm collectsthe set of assertions
raised by the different calls in the same system. We are currently definingour assertion
language and implementing an algorithm that checks the truth of a set of assertions.

Example :Originating Call Screening and Call Forwarding (No. 9 and 12)
Originating Call Screening (OCS) checks a dialed number against a screening list: if the
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number is in the list, the connection will not be established. Call Forwarding (CF) forwards
incoming calls to another number. Suppose a user A subscribes to both OCS and CF (see
Figure 9). A can forward its calls to a number X on the screening list of OCS. Acan then
call itself, and through CF, be connected to the forbidden number X. Similarly, auser B who
subscribes to CF can forward its calls to X. If A calls B, the call is forwarded to X. In both
cases, OCS is thwarted, since the number dialed and tested is not on the screening list.

In the specifications, CF helps to establish physical connections between A and B(asser-
tion pconn(A,B)) and between B and X (pconn(B,X)), and a logical connection betweenA
and X (lconn(A,X)). OCS screens B’s number and assumes that if user A is involved in a
logical connection with another user, then the number of that second user has been screened(A 2 dom(lconn) ! 8x(x 2 lconn(A) ! OCS(x))) ^(A 2 ran(lconn) ! 8x(A 2 lconn(x) ! OCS(x)))
Assertion OCS(X) has not been raised, so the set of assertions does not evaluate to true.

4 Bellcore Benchmark of Feature Interactions

Cameron, Griffeth, Lin, Nilson, Schnure and Velthuijsen proposed a benchmark of feature
interactions [6], hereafter called the Bellcore Benchmark, which is intended to be used to
evaluate and compare different approaches to the feature interaction problem.These inter-
actions are classified by their complexity (number of users, number of network components
involved) and by their causes (violation of assumptions, limitations on network support and
problems in distributed systems).

4.1 Specification of Benchmark Services and Features

We distinguish between a feature and a service in this paper: a service provides stand-alone
operations, whereas a feature provides added functionality to a service and cannotoperate
by itself 1. Our approach was directed towards the problem of specifying switch-provided
customer features; that is, features that extend the functionality of POTS.Other services and
features which provide Operations, Administration and Maintenance (OAM) (e.g., billing),
networking, as well as ISDN features are out of our scope. Moreover, our intention was to
concentrate on the functional behavior of the features. Thus, timing requirements anddata
values are specified abstractly. For example, there exist a number of timingrequirements
for Ringing Timeout, Dialing Timeout, Release Timeout, etc. events in call processing. We
specify these as ordinary Internal events without explicit timing-constraint values.

We are able to specify one of the six services and 15 of the 19 features describedin the
Bellcore Benchmark using our specification notation. The behaviors of these features are
based on the descriptions inDMS-100 Meridian Digital Centrex Library[13] and from our
understanding of the features’ behavior on our university telephone system. The features
used in the benchmark and the services which they modify are listed in Table 4.

1For the purposes of the benchmark study, we classified CENTREX, Voice Mail, Personal Communication Services (PCS), calling
from hotel rooms, and billing as services. Long distance calling is considered to be part of POTS. We classified the rest ofthe examples as
features of various services.



Table 4: List of Features and Services Used in the Benchmark (subscripts used in Abbreviations are:
c - caller, o - operator, i - invoke, r - recall, a - active, 1 - 1st leg, 2 - 2nd leg, n - newcall)

Feature Abbreviation Service
911 911c, 911o POTS
Answer Call AC POTS
Area Number Calling ANC POTS
Automatic CallBack ACBi, ACBr POTS
Automatic ReCall ARCa, ARCr POTS
Call Forwarding CF1, CF2 POTS
Call Number Delivery CND POTS
Call Number Delivery Blocking CNDB POTS
Call Transfer Operator feature CT1, CT2 POTS
Call Waiting CWTa, CWTn POTS
Credit-Card Calling POTS
Distinctive Ringing DR POTS
Multi-location Business Service MBS-ED POTS

-Extension Dialing
Originating Call Screening OCS POTS
Terminating Call Screening TCS POTS
Three-Way-Calling 3WCa, 3WCn POTS
CENTREX extension dialing CENTREX
AIN feature billing billing
Message Rate Charge billing

calling from hotel rooms
Personal Communication Services
Voice Mail Services

4.2 Benchmark Study

The results of our benchmark study are summarized in Table 5. The examples appear in the
same order as given in the Bellcore Benchmark: examples 1-5 are interactionsinvolving a
single user and a single component; examples 6-8 involve a single user and multiple compo-
nents; examples 9-10 involve multiple users and a single component; examples 11-18 involve
multiple users and multiple components; and examples 19-22 are interactions between cus-
tomer features and system features.

The ‘Description of Interactions’ column indicates the level of specification and describes
how the example is modelled using our notation, if possible. For example, in No. 1, the
interaction between Answer Call (AC) and Call Waiting (CWT) is detected at the stack level,
with the Terminating Call Model (TCM) at the bottom of the stack, AC in the middle, and
CWT at the top of the stack; in this configuration, CWT has highest priority. In No. 11, the
example is modelled at the call level. User A, with Originating Call Screening (OCS), calls
user B who has Distinctive Ringing (DR). The direction of the arrow indicatesthe direction of
the call, from caller to callee, and the dotted line separates differentusers. Similar notation
is used to depict a call-group level configuration. In No. 9, user A, who has OCS, calls
themself, and this call is forwarded by Call Forwarding (CF) to user X. Inthis call-group,
there are two calls involved, A calls A and then A calls X.

The last four columns indicate whether we are able to specify the features usedin the
example and whether we are able to detect the interaction. For each example, the type of
interaction is given if it can be detected, and a reason is given if it cannotbe specified or
detected. The abbreviations for the names of the features are given in Table 4.

4.3 Evaluation of Our Approach

Of the 15 Bellcore Benchmark interactions we can detect, six are control modification in-
teractions (No. 1, 2a, 3, 13, 14, 15), one is a data modification interaction (No. 16), one is



Table 5: Benchmark of Interactions Detected

No. Description of Interactions Detect Now Detect
Later

Cannot
Specify

Cannot
Detect

1 stack: TCM/AC/CWTn Control
2a stack: OCM/CWTa/3WCa Control
2b stack: TCM/CWTn/3WCa Resource
3 stack: OCM/3WCa/911c Control
4 stack: TCM/ARCa/TCS Reachability
5 stack: OCM/OCS/ANC Reachability

6 group:

OCM/CT2

OCM/OCS

TCM

A

X

Oper.TCM/CT1
Assertion
Violation

7 Credit-Card Calling and Voice Mail Services Out of Scope
8 MBS-ED and CENTREX-ED Out of Scope
9 group:

TCM/CF1

OCM/OCS

TCM X
OCM/CF2

A
Assertion
Violation

10 CWT and Personal Communication Services Out of Scope
11 call: OCM/OCS

TCM/DR
A
B

Assertion
Violation

12 group:

OCM/CF2

OCM/OCS

TCM

A

X

BTCM/CF1

Assertion
Violation

13 call: A
B

OCM/ACBi
TCM/CWTn

Control

14 group: OCM

OCM/CWTa
TCM/CWTa

OCM

A

B

C

D

TCM/CWTn

TCM/CWTn

Control

15 group: OCM

OCM/3WCn
OCM/CWTa
TCM/CWTa

A

B

C
TCM/CWTn/3WCa

TCM/CWTn

Control

16 call:
TCM/CND
OCM/CNDB A

B
Data

17 group:
TCM/CF1

TCM/CF1

OCM/CF2

TCM/CF1

OCM/CF2

OCM X

A

B

Reachability

18 call: OCM/ACBi A
BTCM/ARCa

race
condition

19 Long Distance Calling and Message Rate
Charge

Out of Scope

20 Calling from hotel rooms Out of Scope
21 AIN feature billing Out of Scope
22 AIN services and POTS Out of Scope



a resource contention (No. 2b), three are reachability interactions (No. 4, 5, 17),and four
are assertion violations. Descriptions of these types of interaction were given in Section 3.
Of the remaining eight interactions, seven are not analyzable because we cannot specify the
services or features used in the example. The other interaction (No. 18) has beenanalyzed,
but the specifications do not contain the necessary information to reveal the interaction.

Specification Notation and Model
As mentioned in Section 4.1, we developed our notation to specify customer switch-based
features. Interactions No. 10, 19-22 involve features and services that our specification
notation is not designed to specify. For example, in No. 19, the different segments in long
distance calling is abstracted away in our model. Thus, we cannot detect interaction between
segment connections and long distance billing. Example 8 involves two features that provide
similar functionality but for different services: CENTREX extension dialing is provided for
CENTREX service which we do not specify.

Abstraction of Timing Constraints
The advantage of specifying timing requirements abstractly is that specification and analysis
is more efficient. However, if timing constraints do not specify the durationof time, then
the reachability analysis might analyze unreachable paths. For example, when a callee hangs
up, the underlying call models are in state ReleasePending until either the callee picks up the
phone again, or until a timeout occurs. Since the reachability analysis considers allpossible
paths of execution, the analysis includes paths in which features perform many transitions and
react to many events before the timeout event occurs. In reality, there is a limit to the number
of tasks the other features can perform within this time period. Therefore, theanalysis may
include a number of unrealistic paths in the composition.

Example 18 describes an interaction between Automatic CallBack (ACB) and Automatic
ReCall (ARC). ACB monitors the line of a busy callee and notifies the callerwhen the callee
hangs up. ARC allows a user to call back the last caller. Suppose user A has ACB,user
B has ARC, A calls B while B is busy, and A activates ACB. When B hangs up, ACBwill
notify A. If B activates ARC at the same time, both ACB and ARC will attempt to establish
a connection between A and B. The features will determine that the parties they are trying to
reach are busy, and the users have a choice as to whether or not they want to reactivate ACB
and ARC. If they both re-activate, then the features may again try to establish the connection.
This scenario can occur repeatedly due to the race condition that A and B are calling each
other simultaneously. Since we do not specify timing constraints, the reachability analysis
does not detect race conditions, and we cannot detect this kind of interaction with our model.

Lack of GoTo Construct
Although a feature has the ability to force a lower priority feature to make aspecific state tran-
sition, there are limitations to this capability: the controlling feature must know the current
state of the controlled feature and can only ask the controlled feature to makea transition that
exists in its specification. In other words, there is no concept of a GoTo construct, whereby
a controlling feature can request that the controlled feature transition to an arbitrary state in
its specification. The primary reason for this decision is that a GoTo construct would violate
the semantics of state-transition machines, on which our model is based.

One of the consequences of this decision is that there are features we cannot specify.
Consider the credit card calling feature (example 7). A user can press # to originate another
call without entering the credit card password again. In our model, the specification for credit
card calling would need to force the Originating Call Model (OCM) to make a transition from
Activeback toCollectingInfo. This transition does not exist in the OCM specification, thus,
the credit card calling service cannot force OCM to make such a transition.



Input Event Synonyms
In our analysis tools, we have incorporated a mechanism that allows us to define token events
with different names but are semantically the same. Since multiple designers often introduce
different terminologies for the same signal, this becomes a potential cause of interactions.
This synonym mechanism helps to resolve the double-definition terminology problem.

Allowable Events
One difficulty we have encountered is that our notation does not provide for the specification
of non-allowable events [3]. For example, in Terminating Call Screening (TCS), while the
number is being screened, internal events of the underlying call model should not be accepted
by the feature stack since the call should not proceed until the screening is done. Theevents.TCMCallPresented and.TCMTerminationDenied are out of the context of the current en-
vironment and we must explicitly disallow them in the specification. Explicitly prohibiting
such inputs at each state is cumbersome. This also increases the complexityof the resulting
specification. For example, the specification of Call Forwarding (CF1) (see Table 2) requires
an additional six transitions to explicitly ignore prohibited token events from theagent. It
would be useful to incorporate a construct for defining the set of non-allowable events at
each state into our notation. This may be addressed in the future.

Architectural Model
The advantage of specifying features independently is that they can be combined in any order
for analysis. New features can be analyzed with all existing features inthe system without
re-specifying the whole system. Only the new features need to be specified. With our stack,
call and call-group models, different aspects of call processing can be analyzed with respect
to a single end-user, two connecting end-users, or multiple inter-related end-users.

State- (and Transition-) Explosion Problems
The advantage of performing reachability analysis is that every possible sequence of actions
is analyzed. However, there is an explosion in the number of states and transitions in the
reachability graph, versus the number of states and transitions in the individual specifications.
The composition of features that have few interactions with one another will producea large
reachability graph. For example, the degree to which 3WC and CWT interact withone
another depends on whether they are invoked by the same user. If user B has 3WC and user
C has CWT, then the number of transitions in the composed reachability graph is enormous,
since there exist many possible interleavings between B’s 3WC and C’s CWT: B’s 3WC
can be activated at any time while connected to C (independently of C’s CWT), and C’s
CWT can switch between the two calls regardless of what state B’s 3WC is in. The number
of transitions in the resultant call-group composition is over 5000, whereas the number of
transitions in a call-group involving only one of the features would be 200 with 3WC, and
1000 with CWT. One technique for reducing the search space would be to incorporate partial
orders into our reachability analyzer [8].

5 Related Work

There are several state-transition approaches [2, 3, 4, 9, 14] in the literature that deal with
the feature interaction detection problem. Each feature is associated with a set of state de-
scription primitives, and its behavior is described in terms of the effects each event has on the
primitives using a set of rules. The state primitives and the rules togethermake up the state-
based model. None of the approaches has a mechanism for inter-feature communication.
Events are only generated outside of the system. Some sort of rule-application mechanism
is used when non-deterministic situations occur during composition. This way, behaviors of



other features may be changed. The main difference between these approaches and ours is
that we have a communication protocol between features and between end-users. Signals are
passed from the environment to the system, between different parties withinthe system, and
from the system to the environment. This enables us to detect data modification interactions
and resource contention interactions, whereas these approaches cannot. The type of interac-
tions they detect are deadlock, consistency and problems that arise from the rule-application
mechanism. We suspect that these correspond to reachability interactions andsome of the
control modification interactions in our model. Kawarasaki and Ohta [9] also proposeman-
ual verification methods for dealing with interactions due to timing, number of retries and the
use of different words for events and primitives that are semantically the same. We can detect
the latter two types of interactions using the same mechanism we have for tracking resource
usage, and using input-event synonyms, respectively. We may be able to incorporatetheir
manual inspection methods for detecting timing interactions in our specifications.

The LOTOS specification model consists of feature specifications and featureintentions
[7, 17]. Each system of features and each intention verifier is viewed as a process in process
algebra and they can be joined together in parallel composition. Feature intentionsare similar
to our assertions: they describe the asserted assumptions and properties that the features
expect to hold. An interaction is detected when a feature intention is violated in the system.
Their method also uses reachability analysis to generate execution sequences to check for
violated intentions. However, due to the state explosion problem, search strategies must be
given to the tools. Interactions are detected by manual inspection of the traces produced from
the tools. We also experience a state explosion problem, but our automated detection method
is feasible for the size of the call-group configurations we have needed to analyze so far.

The Building Block approach [12] is very similar to ours. Both adopt the ideas of speci-
fying features independently and using individual features as building blocks to build differ-
ent call scenarios. In their building block approach, procedural-level specifications describe
how a feature should operate (similar to our State Transition Machine specifications), and
behavioral-level specifications describe what properties a feature must exhibit using tempo-
ral logic formulas (similar to our assertions). Model checking is used both to verify desired
behavior in the procedural specifications and to check that temporal logic propertiesstill hold
after composition. The types of interactions detected include reachability, control modifica-
tion, and assertion violation interactions.

Researchers at BT Laboratories use SDL to model features and detect interactions [10,
11]. A service plane modelprovides a user’s view of the system, and is used to validate
feature specifications and identify interactions. ACentrex network modelis a composition
of service and feature specifications, similar to our call-group, that is usedto inspect the
concurrent activation of features by multiple users (though only one user can activate more
than one feature). Identification of interactions appears to be manual inspectionof simulated
executions of the models. Although simulation is not as thorough as reachability analysis,
they have successfully identified previously unknown interactions using their technique [10].

6 Conclusion

Our approach has been geared to the specification and analysis of the functional behaviors of
customer, switch-based features. We have used the Bellcore Benchmark [6] as a means for
evaluating our approach. We are able to specify all of the customer, switch-based features
discussed in the Bellcore Benchmark with our notation; and we are able to detect 11 of
the 23 benchmark interactions, with the hope of detecting four more once we finish the
implementation of the assertion violation analysis.

Given that we initially chose to concentrate on detecting interactions in switch-based fea-
tures, and given the variety and complexity of the interactions in the Bellcore Benchmark,



we were pleasantly surprised that we were able to detect as many of the interactions as we
have. However, it is not clear that we could detect many of the remaining interactions even
if we were to specify some of the other basic services used in the benchmark examples. Our
approach is limited due to the inability to specify and analyze data values, timing constraints,
and assumptions about the behavior of the environment. In addition, we are concerned about
the degree to which our requirements specifications contain design decisions. We would like
to turn our attention towards assertion based approaches.
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