Evaluation of a State-Based Model of
Feature Interactions

Pansy K. Au Joanne M. Atlee
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1

Abstract. At the second workshop on feature interactions, we propassdte-
based model for specifying features and proposed readyadlalysis algorithms
for detecting various types of feature interactions. Tlaiggy is an evaluation of our
approach with respect to the Bellcore benchmark of feantegactions.

1 Introduction

A featureis a sub-program that adds functionality to an existing software system. éréeat
interactionoccurs when the addition of a new feature affects the behavior of existing services
and features. That is, there is an interaction between feafuaesl g if feature f behaves
one way whery is present and another way when featyrge absent. Most software develop-
ers associate ‘feature interactions’ with unintended interactions betigaéures that were
thought to be unrelated. However, since the purpose of a feature is to modify or enhance
functionality, features by definition interact; at the very least, a netufe is expected to
interact with those features and/or services whose functionality is inteliyionadified by
the new feature. Thus, the problem of detecting feature interactions is twofeldant to
validate specified interactions and to detect unspecified interactions.

At the second workshop on feature interactions [5], we proposed graphical and teiula
tations, based on a state-transition model, for specifying the functional beb&tébephone
services and features. We also presented algorithms for composing feegtcifecations and
for detecting certain types of interactions. Since then, we have developeddees into a
suite of prototype tools that support automated detection of feature interactids [B].

In this paper, we evaluate our approach to feature specification and irdardetection
with respect to a benchmark of feature interactions, published by Bellchrd/fchave only
attempted to specify one of the six services listed in the benchmark: ®ldiitelephone
Service (POTS). In addition, we found we were able to specify 15 of the 19 ésased in
the benchmark, and were able to detect 11 of the 23 interactions, with the hope ofdlyent
being able to detect 15 interactions.

2 Specification Model

The behaviors of features are modelled as state transition machines (SVMMsE each

transition is triggered by a single input event [5]. Each feature is spedifeebendently

of other features. Multiple STM’s can be composed together to form another STiMhw
represents the reachability graph [1, 16, 15]. During the composition, tests tatidgt

interactions are run in each reachable state.

*This research has been supported by Natural Sciences aimeErigg Research Council of Canada, with matching fur@a ortel.

Table 1: Descriptions of Events and Assertions

| Events and Assertions Descriptions
Token Events
Jatoken, {r4token - Agent Token Eventstokens passed down from or up to the agent
Urtoken, {yrtoken - Remote Token Eventgokens passed down from or up to the remote user
State Transition Events
= f - Enable Event: featuref is ready to become active
2>f Sle) - Activation Event: featuref has become active and is in state S
S1%;S26) - RequestStateChange Everieaturef requests to transition from S1 to Sp
981M>f S2¢) - ModifyStateChange Eventfeatureg forcesy to transition from S1 to S2
Sl%f S2¢) - OccurredStateChange Eventeaturef has made a transition from S1 to S2
Sibling Events
Sl%P(f)SZ - Parallel Transition Event: featuref of the sibling machine is in state S2
= p(s)token,<p(s token - Parallel Input Event: tokens passed from or to sibling feature
NewCall;(BCM) - NewCall Event: start a new stack with basic service BCM and featfure
Internal Events
>;event - Internal Event: internally generated event by featyfe
* - Wildcard state or token
FA - Assertion raised: property A is asserted to be true, and will continue to be
asserted until explicitly un-asserted
IA - Assertion lowered:property A is un-asserted

2.1 Specification Notation

Features are specified as State Transition Machines using a tabulasmdEaich row in the
table represents a transition from an old state to a new state, due to tlieeoce of an input
event. As a side effect of the transition, an output event might be issued oreaticasgised
(e.g., the assertion of an assumption). A feafucan control the behavior of a second feature
g in two ways: it can communicate with the second feature via signal passikgr{ Events).
Alternatively, it can control behavior by monitoring, rejecting, or modifyingestaansitions
made by the second feature (Activation event and StateChange events)ipfimss of all
the events and assertions defined in the notation are given in Table 1.

In accordance with the Advanced Intelligent Network (AIN) architecttire originating
end of a call (called the Originating Call Model, or simply OCM) and the ix&cg end
of a call (called the Terminating Call Model, or simply TCM) are modelledseparate,
communicating STMs. If a featurg is intended to modify the behavior of a basic call,
then we write a specification gfthat modifies an OCM and a different specificatifirthat
modifies a TCM.

The specifications of the Call Forwarding feature are given in Tables 2 andIBF@-
warding incoming (CPH modifies the behavior of a call received by a subscriber who has
invoked the CF feature; that is, it modifies a TCM (Table 2). Call Forwardutgoing (Ck)
spawns the forwarded call; it imitates the OCM in a call from the subsowhe invoked CF
to the forwarded number. GBuspends the TCM of the initial call in stadathTermination
thereafter simulating the TCM’s functionality. €Buspends the OCM of the forwarded call
in stateAuthOrigAtt thereafter simulating the OCM's functionality. Data is passed betwee
CF, and CE as parallel tokens. Thus, if a user A calls a subscriber B, who has forwatded al
calls to user C, the CF machines act as intermediaries that pass sigmademé and C.

2.2 Levels of Specification and Composition

Architecturally, call configurations are modelled at four different levieésature Stack Call,
and Call-Group. At each level, the model is divided into te@vironmentand thesystem
The systenrefers to the part of the model that is of particular interest (enclosed inteddot

State Input Event Output Event NewState [ResourcéAssertions
Ready 2o arAuthTerminationd) g TerminationAttempt) Receiving
Receiving AuthTerminatios ., HuntingFacility(>r ¢y CallPresenteewCall s (OCM), 14 ShortAlert \WaitSibling
AuthTerminatior ;. , ,Exceptionfr ¢ 5s TerminationDenied) Exception
2> 1 oy EXCEPLioN() Null
25 oy NUII(%) Null
WaitSibling *%P(CF) Originated <=p(cr)OriginationAttempt.s Forwarding
4% WaitSibling
2 o EXCEPtiong) Exception
k25 oy NUI() Null
*%P(CF) Null o r AuthTerminatiod® ., Null({}.s DisconnectNull
Forwarding= p(cr)CallDelivered rCallDelivered;) 4 Alert Alerting
= p(cr)Answered rANnswered Connected llconn(t,d)
= p(cr)CalledPartyBusy rCalledPartyBusy Exception
= p(cr)CallCleared rCallCleared Exception
k557 - s EXCEpLiong) Exception
rCallCleared < forward>> Null
k21 o NUI() Null
4% Forwarding
Alerting = p(cr)Answered rANswered Connected llconn(t,d)
= p(cr)CalledPartyBusy rCalledPartyBusy Exception
= p(cr)CallCleared rCallCleared Exception
k25 oy NUI() Null
4% Alerting
Connected = p(¢r)CallCleared rCallCleared ReleasePend
25 oy NUII(%) Null
4% Connected
ReleasePeng p ¢) CalledPartyReconnect rCalledPartyReconnect Connected
rReleaseTimeout c rFAuthTerminatiod ., ,Null({} g CallCleared)ull
k25 oy NUI() Null
4% ReleasePend
Exception *%P(CF) Null c rAuthTerminatiod .~ ,,Null({} g CallClearedNull
25 oy NUII(%) Null
4% Exception

e e Jo Bs| Hwow! ay) uo (S|[eD |Iv) pJemioH [fed Jo uoieoyoads :z sjgel

[State Input Output Event NewState |ResourcéAssertions
Ready % oo ar AUthOrigALtt(x) SetUp
SetUp AuthOrigAtt?s , -, ,Collectinfo>o ¢ 4rOrig Originated
S5 30 EXCEpLioN§) Exception
*%P(CF)NUII c rAUthOrigAtt™ , -, Null({} 4 Disconnect) Null
kS5 o o NUII(x) Null
Originated = p(cr)OriginationAttempt.t SelectRoute
*%P(CF)NUII c rAUthOrigAtt™ , -, Null({}4 Disconnect) Null
4% Originated
SelectRoute> - rRouteSelected AuthCall
P>crNetworkBusy aNetworkBusy Exception
*%P(CF)NUII c rAUthOrigAtt™ , -, Null({} 4 Disconnect) Null
4% SelectRoute
AuthCall P ¢rCallSetupAuthorized rCallRequest SendCall
P>crCallSetupDenied 4 CallSetupDenied Exception
*%P(CF)NUII c rAUthOrigAtt™ , -, Null({} 4 Disconnect) Null
4% AuthCall
SendCall [JrCallDelivered <p(cr)CallDelivered Alerting
rANnswered <p(cr)Answered Connected Flconn(t,d),Fpconn(s,d
rCalledPartyBusy <p(cr)CalledPartyBusy Exception
rCallCleared <p(cr)CallCleared ¢ r AuthOrigAtt™ , - ;,Null({}.4 Disconnecijull
*%P(CF)NUII rCallCleared ¢ r AuthOrigAtt™ , . ;,Null({} 4 Disconnect) Null
4% SendCall
Alerting rANnswered <p(cr)Answered Connected Flconn(t,d),Fpconn(s,d
rCalledPartyBusy <p(cr)CalledPartyBusy Exception
rCallCleared <p(cr)CallCleared Exception
*%P(CF)NUII rCallCleared ¢ p AuthOrigAtt™ , ., ,Null({L4 Disconnect) Null
4% Alerting
Connected (| g CallCleared <p(cr)CallCleared ReleasePend
*%P(CF)NUII rCallCleared ¢ p AuthOrigAtt™ , ., ,Null({L4 Disconnect) Null llconn(t,d), 'pconn(t,d)
Ak Connected
ReleasePeritk CalledPartyReconnect <p(cr)CalledPartyReconnect Connected
*%P(CF)NUII rCallCleared ¢ r AuthOrigAtt™ , . ;,Null({} 4 Disconnect) Null llconn(t,d), 'pconn(t,d)
4% ReleasePend
Exception *%P(CF) Null c rAUthOrigAtt% , -, Null({} 4 Disconnect) Null
Ak Exception

~

|1'ea e Jo Ba| Biweo sy uo (S|[eD |Iv) premiod e Jo uoneoyioads g ajqeL

~

ENVIRONMENT

ENVIRONMENT

’ Basic Call Model‘

(a) Basic Service (b) Feature

Figure 1: Feature Level

ENVIRONMENT

token A token
events KL

events

|
o= = siblin

! r F:zature <———— evenfs
state !
transition| | : token :(Okenevents, user A ENVIRONMENT userB
events ! events - State transition
Y events | agent token agent token
L sibling events events
<<71 events
|
|
= siblin

Feature O
| (Basic Call Model

SYSTEM

,,,,,,,,,,,,,,,,,,,,,

Figure 2: Stack Level Figure 3: Call Level

rectangle in the diagrams, please see Figures 1a and 1b for examples) anditthiement
refers to the elements in the model with which the system interacts/(bugy outside of the
dotted rectangle). Each architectural level focuses on a particulastagpgke configuration.

The featurelevel describes the behavior of an individual feature or serviceseice
is a stand-alone functionality that is complete in itself. Figure 1a shows ourlrobtiee
Plain Old Telephone Service (POTS) which provides basic call processingias. The
systems of interest here are the two ends of POTS: OCM and the TCM. The eneitbnm
for each system is the human user of the system (the agent) and the connection bethe ot
service (the remote user). That is, each basic call model interattstsvdagent and with its
remote counterpart. feature on the other hand, is an addition or modification to an existing
service; it cannot stand by itself. A feature modifies the behavior of the basicedy
acting as a mediator between the basic call model’'s environment and the bdlhsrodel
(Figure 1b). Information passed from the basic call model’'s environment iséest and
possibly modified by the feature before it is passed to the basic call model.

The stacklevel describes the behavior of a single end of a call and represents the compo-
sition of all the features activated on that end of the call (Figure 2). Taterfe at the top of
the stack is said to have the highest priority in the stack, since it is gtedimtercept inputs
from the environment and the last to modify outputs to the environment. For the sasoare
the feature at the bottom of the stack (the basic service) is said to haveatést Ipriority.
Within the system of a stack, communication among the features consistsofeventand
state transition eventsToken events represent data passed between adjacent features in the
stack. State transition events represent requests to transition tosatewor notifications of
a transition made (higher priority features can control lower priorityuiesst by rejecting or

ENVIRONMENT

user B
user A — user C
agent token agent token agent token agent token
events events events events

SYSTEM

,,

(| \
! siblintg |
! evenfs |
‘ |
| WH |
| |
| |
| |
| |

Figure 4: Call-Group Level

modifying state transition requests). At the stack composition level, aomgation among
features in a stack is processed until all issued token events andrataidn events are
resolved.

The call level describes the behavior of a call. It is the composition of two stackh, eac
representing an end of the call, connected by a communication channel (Figure 8all€he
and the callee communicate by passiagiote token eventsvhich are designated for the
remote user. Remote token events from one stack are passed as input to theaokher s

Finally, the behavior of multiple calls involving common users is depictedcad-group,
and represents the composition of several call specifications (see Figukefdature in-
volved in multiple calls, such as Call Waiting or Three-Way-Calling, widwdve a represen-
tative feature specification in each of the user’s stack (shown inigifeigures 3 and 4); such
features are callesibling featuresand can communicate va&bling events

3 Detection of Interactions

During the composition, each reachable state is tested to determin@iéaaction can occur
at that state. Composition and detection algorithms have been implemented: anel able
to automatically detect four types of interactions: control modification, datafroatiion,
resource contention and unreachable interactions. We have provided a basis ¢onglete
a fifth type of interaction, assertion violation, for which an analysis algorhurrently
being implemented. Examples of these interactions are discussed below. Tingdes<are
taken from the Bellcore Benchmark [6] (discussed in Section 4) and the exampibers
given in [6] are referenced.

3.1 Control Modifications

A control modification interaction occurs when one feature affects the floeeotrol in

another feature. This can be done explicitly, by forcing the second featurengitiva to a
new state (which is only possible if the two features execute in the saah@destack); or
implicitly, by intercepting, modifying or introducing data sent to the second featur

3.1.1 Control of tokens

Features can communicate with each other by passing tokens. Since tokercandntgyer
features’ transitions, behaviors of features can be altered by intercéptitgkens passed to

the features. When a feature in a stack receives a token, it can eiisat pachanged to the

next feature, pass a modified token to the next feature, or consume the token by not passing
it on. Passing a received token allows other features to react to the to&ersuming a token

in effect prevents features from reacting to this token. For example, usrid®@LD feature,

a user can press the hold button and then put the receiver on hook without disconnecting the

N.CallRequest?origin

artyBusy R
ACBl C denies req
CNDB

WTn needs
CallRequest.origin
’ OCM TCM Hunt|ngFaC|I|ty] Vs a g
N’Exceptlon OCM
Figure 5: Control Modifications (No. 13) Figure 6: Data Modifications (No. 16)

call. Essentially, HOLD intercepts the Disconnect token, thereby pregetite Basic Call
Model from receiving the Disconnect request and ending the call. This type of iterac
is detected when more than one feature in a feature stack is ready to ingathtkdoken, a
high-priority feature consumes or alters the token before it reaches otheefeattine stack.

3.1.2 Control of features’ state-transitions

A feature can also control another feature’s behavior by denying or modifying atibansi
request. Before a feature makes a transition, permission must be obtaineallffeatures
that have higher priority. When a higher priority feature receives a statsition request
from a lower priority feature, it can either grant permission, deny pesionsor force the re-
guesting feature to make an alternate transition. This type of interactietasted whenever
a state-transition request is denied or modified. Since state-trangtjaasts and events are
only passed among features executing in the same stack, we only searchk fotdtaction
during composition of a stack.

A side effect of disallowing a state-transition is that the output ever@sdutput tokens)
associated with the transition do not occur. This type of interaction is @etedien a denied
or modified state-transition would have output one or more tokens.

Example :Call Waiting and Automatic CallBack (No. 13)
Call Waiting (CWT) enables a user to receive and answer a second cédl tvbiphone is
busy. This is achieved by preventing the Terminating Call Model (TCM) of ¢oersd call
from entering state Exception and sending a Busy token to the caller. Instéad wil
determine whether facilities exist to support the call, and if so, insthecTCM to set up the
call. Automatic CallBack (ACB) helps a caller to eventually esttbh connection to a party
that is currently busy. If a user A calls B and gets a busy signal, then Actavate ACB,
which will monitor B’s phone line. When B hangs up, the switch will ring A; if A picks up,
the switch will automatically ring B and set up a connection.

Suppose user A has ACB and user B has CWT, as shown in Figure 5. A calls B while
B is talking to another user C. Although B is busy, A will not be able to activaBBA
because As feature stack will not receive a Busy token from B’s stackreTdre actually
two control modification interactions here. One is the explicit interactionfGlenying a
state-transition in the TCM (the transition to the Exception state).sBeend is an implicit
interaction that occurs because the Busy token, which would have been output by the denied
state-transition, is not sent.

3.2 Data Modifications

A data modification interaction occurs when a token received by one featuredrasnioe-
ified by another. When a feature receives a token, it has the ability to mdsifpiues. A
guestion mark “?’ is used to indicate when a token value has been modified. A ddifxm
cation interaction is detected when a feature accepts a token that caytaibsl *?’.

Example :Call Number Delivery Blocking and Call Number Delivery (No. 16)
Call Number Delivery (CND) allows the callee to see the caller's phomeber. Call
Number Delivery Blocking (CNDB) modifies the caller’'s number in the CadjiRest to-

+bridge

V y f.C fi CallRequest
quest rCFl CFill CR CFill CR2

%(Clg:allRequest %(C,_(;aIIRequest

ﬂRCaIIR

+bridge

Figure 7: Resource Contentions (No. 2b) Figure 8: Reachability (No. 17)

ken so that the real number is not delivered. Suppose user A, who has CNDB, calls use
B, who has CND. The CNDB feature modifies As number so that B’s stackveséoken
|lrCallRequest?origin instead of tok&prCallRequest.origin (please see Figure 6). At this
point, a data modification interaction is detected.

3.3 Resource Contentions

A resource contention interaction occurs when the number of requested resoge=gtas
than the number of resources available. This is detected by counting the numbeuotess
currently used by each user during the call process. When the number of alleesdacces
is equal to the number of available resources, an additional request will iresutesource
contention interaction.

Example :Three-Way-Calling and Call Waiting (No. 2b)

Both Three-Way-Calling (3WC) and Call Waiting (CWT) require the use ofauece known

as a bridge. 3WC uses a bridge to support origination of a second call, and CWT uses a bridge
to support the receipt of a second call. However, the switch only allocdteside to each
telephone line card. Suppose a user A subscribes both CWT and 3WC (please see Figure 7).
Suppose further that A is talking with B, and uses CWT to accept a phone call fréfn C.
resource contention will occur if A subsequently attempts to invoke 3WC.

3.4 Reachability

A reachability interaction occurs when a state in a feature’s spdafichecomes unreach-
able after the composition. This is detected by comparing the set of reacratble [stfore

and after the composition. A reachable state might appear to be unreachablecdnidse

an intermediate state in the composition. More commonly, a state is unreatiegbluse the
transition(s) into the state has been explicitly denied or its input event negars.

Example :Call Forwarding and Call Forwarding (No. 17)

Suppose user A has Call Forwarding (CF) and has forwarded their calls to uSapgose
B also has CF and has forwarded their calls to A. If a user calls A, thésdalrwarded to
B, then forwarded to A, then forwarded to B and so on (see Figure 8). Thisaati@n is
detected as a reachability interaction because many of the normallyatdacstates in the
underlying call models are never reached.

3.5 Assertion Violations

An assertion-violation interaction occurs when the set of currently rasedrtions is un-
satisfiable. For each reachable state, the composition algorithm caliectst of assertions
raised by the different calls in the same system. We are currently defningssertion

language and implementing an algorithm that checks the truth of a set of assertions.

Example :Originating Call Screening and Call Forwarding (No. 9 and 12)
Originating Call Screening (OCS) checks a dialed number against a screeting the

pconn(B,X) ¢
Iconn(A,X)
user X

Y
X € Iconn(A)=0CS(X pconn(A,B)

OCS(B)

user A

Figure 9: Assertion Violation (No. 12)

number is in the list, the connection will not be established. Call Forwardinyf(@wards
incoming calls to another number. Suppose a user A subscribes to both OCS and CF (see
Figure 9). A can forward its calls to a number X on the screening list of OC&rAthen
call itself, and through CF, be connected to the forbidden number X. Similargg@aB who
subscribes to CF can forward its calls to X. If A calls B, the callassfarded to X. In both
cases, OCS is thwarted, since the number dialed and tested is not on timengglise

In the specifications, CF helps to establish physical connections between A(asdds-
tion pconn(A,B)) and between B and X (pconn(B,X)), and a logical connection betveen
and X (Iconn(A,X)). OCS screens B’s number and assumes that if user A ivea/ol a
logical connection with another user, then the number of that second user has beaadcre

(A € dom(lconn) — Ve (z € leonn(A) — OCS(x))) A
(A € ran(lconn) — Va(A € lconn(z) — OCS(x)))

Assertion OCS(X) has not been raised, so the set of assertions does notectatuias.

4 Bellcore Benchmark of Feature Interactions

Cameron, Griffeth, Lin, Nilson, Schnure and Velthuijsen proposed a benchmarktafde
interactions [6], hereafter called the Bellcore Benchmark, which enohtd to be used to
evaluate and compare different approaches to the feature interaction pralilese inter-
actions are classified by their complexity (number of users, number of network contpone
involved) and by their causes (violation of assumptions, limitations on netwpgost and
problems in distributed systems).

4.1 Specification of Benchmark Services and Features

We distinguish between a feature and a service in this paper: a service gretadd-alone
operations, whereas a feature provides added functionality to a service and cperait

by itself *. Our approach was directed towards the problem of specifying switch-provided
customer features; that is, features that extend the functionality of RQth&r services and
features which provide Operations, Administration and Maintenance (OAN), (@lling),
networking, as well as ISDN features are out of our scope. Moreover, our intenai®mow
concentrate on the functional behavior of the features. Thus, timing requiremerdatand
values are specified abstractly. For example, there exist a number of tiegngements

for Ringing Timeout, Dialing Timeout, Release Timeout, etc. events irpcatessing. We
specify these as ordinary Internal events without explicit timing-constralnesg.

We are able to specify one of the six services and 15 of the 19 features desnrthed
Bellcore Benchmark using our specification notation. The behaviors of these featare
based on the descriptions@MS-100 Meridian Digital Centrex Library13] and from our
understanding of the features’ behavior on our university telephone system. The deature
used in the benchmark and the services which they modify are listed in Table 4.

1For the purposes of the benchmark study, we classified CENTRAEice Mail, Personal Communication Services (PCS),ingll
from hotel rooms, and billing as services. Long distancéngpis considered to be part of POTS. We classified the retfiteoéxamples as
features of various services.

Table 4: List of Features and Services Used in the Benchmsuks€ripts used in Abbreviations are:
c - caller, o - operator, i-invoke, r-recall, a-active, 1tleg, 2-2ndleg, n-newcall)

Feature Abbreviation Service

911 911c, 9110 POTS

Answer Call AC POTS

Area Number Calling ANC POTS

Automatic CallBack ACBI, ACBr POTS

Automatic ReCall ARCa, ARCr POTS

Call Forwarding CF, CR POTS

Call Number Delivery CND POTS

Call Number Delivery Blocking CNDB POTS

Call Transfer Operator feature CT4, CT, POTS

Call Waiting CWTa, CWTn POTS

Credit-Card Calling POTS

Distinctive Ringing DR POTS

Multi-location Business Service| MBS-ED POTS

-Extension Dialing

Originating Call Screening ocCs POTS

Terminating Call Screening TCS POTS

Three-Way-Calling 3WCa, 3WCn POTS

CENTREX extension dialing CENTREX

AIN feature billing billing

Message Rate Charge billing
calling from hotel rooms
Personal Communication Service$
Voice Mail Services

4.2 Benchmark Study

The results of our benchmark study are summarized in Table 5. The examples appear i
same order as given in the Bellcore Benchmark: examples 1-5 are interantiohsng a
single user and a single component; examples 6-8 involve a single user and multipke com
nents; examples 9-10 involve multiple users and a single component; examples 1k inv
multiple users and multiple components; and examples 19-22 are interactionsrbetwsee
tomer features and system features.

The ‘Description of Interactionicolumn indicates the level of specification and describes
how the example is modelled using our notation, if possible. For example, in No. 1, the
interaction between Answer Call (AC) and Call Waiting (CWT) is detd@t the stack level,
with the Terminating Call Model (TCM) at the bottom of the stack, AC in the naddhd
CWT at the top of the stack; in this configuration, CWT has highest priority. In No.h&l, t
example is modelled at the call level. User A, with Originating Cale®aing (OCS), calls
user B who has Distinctive Ringing (DR). The direction of the arrow indicdueslirection of
the call, from caller to callee, and the dotted line separates diffasams. Similar notation
is used to depict a call-group level configuration. In No. 9, user A, who has O@S§, ca
themself, and this call is forwarded by Call Forwarding (CF) to user Xhis call-group,
there are two calls involved, A calls A and then A calls X.

The last four columns indicate whether we are able to specify the featuresnuesl
example and whether we are able to detect the interaction. For each examepige of
interaction is given if it can be detected, and a reason is given if it camngpecified or
detected. The abbreviations for the names of the features are given in Table 4.

4.3 Evaluation of Our Approach

Of the 15 Bellcore Benchmark interactions we can detect, six are controfinatighn in-
teractions (No. 1, 2a, 3, 13, 14, 15), one is a data modification interaction (No. 16), one is

Table 5: Benchmark of Interactions Detected

No. | Description of Interactions Detect Now | Detect Cannot Cannot
Later Specify Detect
1 |stack: TCM/AC/CWTn Control
2a | stack: OCM/CWTa/3WCa Control
2b | stack: TCM/CWTn/3WCa Resource
3 |stack: OCM/3WCa/91llc Control
4 |stack: TCM/ARCa/TCS Reachability
5 | stack: OCM/OCS/ANC Reachability
6 |group: |- OCM/OCS _ _ __ A Assertion
rocwier, | __oper. Vilaton
TCM X
7 | Credit-Card Calling and Voice Mail Service$ Out of Scope
8 | MBS-ED and CENTREX-ED Out of Scope
9 | group: OCM/OCSs Assertion
TCM/CF1 A Violation
_FOCMICF2 _ _ _ _ _ _ _.
TCM X
10 | CWT and Personal Communication Services Out of Scope
11 | call: _rOCM/OCS. A Assertion
TCM/DR B Violation
12 | group: | _OCM/OCS _ _ __ A Assertion
TCM/CF1 B Violation
_FOCMICF2 _ _ _ _ _ 7.
TCM X
13 | call: _COCMIACBL . . _ A Control
TCM/CWTn B
14 | group: |_FOCM_ _ _ ______ C. Control
TCM/CWTn A
FOCMICWTa _ __ " .
TCM/CWTa
PICM/ICWTn _ _ _ "~ .
OCM D
15 |group: | _rOCM_ _ _ ______ C Control
TCM/CWTn/3WCa
OCM/3WCn A
[FOCMICWTa _ _ _ _ _.
TCM/CWTa B
TCM/CWTn
16 | call: _COCMICNDB_ _ _ _ _ A . Data
TCM/CND B
17 |group: | _rOCM_ _ _ ____ __ X Reachability,
TCM/CF1
TCM/CF1 A
_[FOCMICF2 _ _ _ _ _ _ _.
TCM/CF1 B
OCMI/CF2
18 | call: _COCMI/ACBL _ _ _ _ A . race
TCM/ARCa B condition
19 | Long Distance Calling and Message Rate Out of Scope
Charge
20 | Calling from hotel rooms Out of Scope
21 | AIN feature billing Out of Scope

22

AIN services and POTS

Out of Scope

a resource contention (No. 2b), three are reachability interactions (No. 4, Srid/jour
are assertion violations. Descriptions of these types of interaction wegr givSection 3.
Of the remaining eight interactions, seven are not analyzable because we qmuiiytthe
services or features used in the example. The other interaction (No. 18) haanadgred,
but the specifications do not contain the necessary information to revealehactndn.

Specification Notation and Model

As mentioned in Section 4.1, we developed our notation to specify customehsdvaised
features. Interactions No. 10, 19-22 involve features and services that ouficspien
notation is not designed to specify. For example, in No. 19, the different segmdotwi
distance calling is abstracted away in our model. Thus, we cannot deteatirdarbetween
segment connections and long distance billing. Example 8 involves two featurpsdhiae
similar functionality but for different services: CENTREX extension idiglis provided for
CENTREX service which we do not specify.

Abstraction of Timing Constraints

The advantage of specifying timing requirements abstractly is that spéoifieand analysis
is more efficient. However, if timing constraints do not specify the duratifotime, then
the reachability analysis might analyze unreachable paths. For example, whiee daags
up, the underlying call models are in state ReleasePending until either the palks up the
phone again, or until a timeout occurs. Since the reachability analysis consideossble
paths of execution, the analysis includes paths in which features perform raasgitns and
react to many events before the timeout event occurs. In reality, tharemnit to the number
of tasks the other features can perform within this time period. Thereforentdgsis may
include a number of unrealistic paths in the composition.

Example 18 describes an interaction between Automatic CallBack (AGdBpatomatic
RecCall (ARC). ACB monitors the line of a busy callee and notifies the cadtem the callee
hangs up. ARC allows a user to call back the last caller. Suppose user A hasus@aB,
B has ARC, A calls B while B is busy, and A activates ACB. When B hangs up, AdB
notify A. If B activates ARC at the same time, both ACB and ARC wileatipt to establish
a connection between A and B. The features will determine that the partjearth&rying to
reach are busy, and the users have a choice as to whether or not they wartitateeACB
and ARC. If they both re-activate, then the features may again trydblesh the connection.
This scenario can occur repeatedly due to the race condition that A and B larg each
other simultaneously. Since we do not specify timing constraints, the reathabglysis
does not detect race conditions, and we cannot detect this kind of interaction wittodek. m

Lack of GoTo Construct

Although a feature has the ability to force a lower priority feature to madeeaific state tran-
sition, there are limitations to this capability: the controlling featuretrknsw the current
state of the controlled feature and can only ask the controlled feature toantigkesition that
exists in its specification. In other words, there is no concept of a GoTo consthuteby
a controlling feature can request that the controlled feature transitianaobgtrary state in
its specification. The primary reason for this decision is that a GoTo cohstautd violate
the semantics of state-transition machines, on which our model is based.

One of the consequences of this decision is that there are features we canngt specif
Consider the credit card calling feature (example 7). A user can press igittate another
call without entering the credit card password again. In our model, the spgoffiéar credit
card calling would need to force the Originating Call Model (OCM) to makaiasition from
Activeback toCollectingInfa This transition does not exist in the OCM specification, thus,
the credit card calling service cannot force OCM to make such a transition.

Input Event Synonyms

In our analysis tools, we have incorporated a mechanism that allows us to definevekes
with different names but are semantically the same. Since multiplgrekssi often introduce
different terminologies for the same signal, this becomes a potential causemaictnins.
This synonym mechanism helps to resolve the double-definition terminology problem.

Allowable Events

One difficulty we have encountered is that our notation does not provide for the spamificat
of non-allowable events [3]. For example, in Terminating Call Screenii@)T while the
number is being screened, internal events of the underlying call model should not bedccept
by the feature stack since the call should not proceed until the screening is dorexvenite
>roCallPresented andrqy, TerminationDenied are out of the context of the current en-
vironment and we must explicitly disallow them in the specification. Expji@tiohibiting

such inputs at each state is cumbersome. This also increases the congiléhétyesulting
specification. For example, the specification of Call Forwarding Y($€e Table 2) requires

an additional six transitions to explicitly ignore prohibited token events fromagent. It
would be useful to incorporate a construct for defining the set of non-allowable etents a
each state into our notation. This may be addressed in the future.

Architectural Model

The advantage of specifying features independently is that they can be combingdidem
for analysis. New features can be analyzed with all existing featurdgeisystem without
re-specifying the whole system. Only the new features need to be specifiddoWistack,
call and call-group models, different aspects of call processing can be adaiyth respect
to a single end-user, two connecting end-users, or multiple inter-related ersd-us

State- (and Transition-) Explosion Problems

The advantage of performing reachability analysis is that every possible seqfeattions

is analyzed. However, there is an explosion in the number of states andidragit the
reachability graph, versus the number of states and transitions in the individoéicspions.

The composition of features that have few interactions with one another will pradacge
reachability graph. For example, the degree to which 3WC and CWT interactomweh
another depends on whether they are invoked by the same user. If user B has 3WC and user
C has CWT, then the number of transitions in the composed reachability graph isoersorm
since there exist many possible interleavings between B’'s 3WC and C's CWBVBC

can be activated at any time while connected to C (independently of C's C&vidl) C’s
CWT can switch between the two calls regardless of what state B's 3AC The number

of transitions in the resultant call-group composition is over 5000, whereas the nombe
transitions in a call-group involving only one of the features would be 200 with 3WC, and
1000 with CWT. One technique for reducing the search space would be to incorporgte part
orders into our reachability analyzer [8].

5 Related Work

There are several state-transition approaches [2, 3, 4, 9, 14] in theureethat deal with

the feature interaction detection problem. Each feature is associ#ted get of state de-
scription primitives, and its behavior is described in terms of the effemth event has on the
primitives using a set of rules. The state primitives and the rules togethlez up the state-
based model. None of the approaches has a mechanism for inter-feature communication.
Events are only generated outside of the system. Some sort of rule-applicatbamsen

is used when non-deterministic situations occur during composition. This way, behakior

other features may be changed. The main difference between these approaches &nd our
that we have a communication protocol between features and between end-iggels. &8e
passed from the environment to the system, between different parties thiéhsystem, and
from the system to the environment. This enables us to detect data modificagi@ctidns
and resource contention interactions, whereas these approaches cannot. The tygpaosf int
tions they detect are deadlock, consistency and problems that arise from theplitation
mechanism. We suspect that these correspond to reachability interactiosgsraedaf the
control modification interactions in our model. Kawarasaki and Ohta [9] also propase
ual verification methods for dealing with interactions due to timing, number vésand the
use of different words for events and primitives that are semanticallyathe sWe can detect
the latter two types of interactions using the same mechanism we have fangraesource
usage, and using input-event synonyms, respectively. We may be able to incotpenate
manual inspection methods for detecting timing interactions in our specifications

The LOTOS specification model consists of feature specifications and featem&ons
[7, 17]. Each system of features and each intention verifier is viewed agag¥in process
algebra and they can be joined together in parallel composition. Feature intearemisilar
to our assertions: they describe the asserted assumptions and propertibs fieatures
expect to hold. An interaction is detected when a feature intention is wiblatte system.
Their method also uses reachability analysis to generate execution sexjtecbeck for
violated intentions. However, due to the state explosion problem, seartdggsamust be
given to the tools. Interactions are detected by manual inspection of the mamhiced from
the tools. We also experience a state explosion problem, but our automatecdetesttnod
is feasible for the size of the call-group configurations we have needed to analfge s

The Building Block approach [12] is very similar to ours. Both adopt the ideas @i-spe
fying features independently and using individual features as building blocks to bifidd di
ent call scenarios. In their building block approach, procedural-level spafis describe
how a feature should operate (similar to our State Transition Machine sp#iaifis), and
behavioral-level specifications describe what properties a feature musttexdiity tempo-
ral logic formulas (similar to our assertions). Model checking is used botkriby/\desired
behavior in the procedural specifications and to check that temporal logic propgélitiesid
after composition. The types of interactions detected include reachabilityptorddifica-
tion, and assertion violation interactions.

Researchers at BT Laboratories use SDL to model features and deteattiotes [10,
11]. A service plane modgirovides a user’s view of the system, and is used to validate
feature specifications and identify interactions.Cantrex network mode$ a composition
of service and feature specifications, similar to our call-group, that is tesetspect the
concurrent activation of features by multiple users (though only one user caatactiore
than one feature). Identification of interactions appears to be manual inspefcsionulated
executions of the models. Although simulation is not as thorough as reachabilityianalys
they have successfully identified previously unknown interactions using theiritge [10].

6 Conclusion

Our approach has been geared to the specification and analysis of the functionadisatfavi
customer, switch-based features. We have used the Bellcore Benchrhaskg 6neans for
evaluating our approach. We are able to specify all of the customer, switeld-bestures
discussed in the Bellcore Benchmark with our notation; and we are able ta détet
the 23 benchmark interactions, with the hope of detecting four more once we finish the
implementation of the assertion violation analysis.

Given that we initially chose to concentrate on detecting interactionsitolsbased fea-
tures, and given the variety and complexity of the interactions in the BellBenchmark,

we were pleasantly surprised that we were able to detect as many ofeéh&ciians as we

have. However, it is not clear that we could detect many of the remainiagattons even

if we were to specify some of the other basic services used in the benchmarglezaOur
approach is limited due to the inability to specify and analyze data valoesgtconstraints,

and assumptions about the behavior of the environment. In addition, we are concerned about
the degree to which our requirements specifications contain design decision©Wudile

to turn our attention towards assertion based approaches.

References

[1] P. Au. An evaluation of a state-based model of featurerawtions. Master’s thesis, Department of
Computer Science, University of Waterloo, 1997.

[2] J. Blom, B. Jonsson, and L. Kempe. Using Temporal LogicNmdular Specification of Telephone
Services. Ireature Interactions in Telecommunications Sysiqrages 197-216, 1994.

[3] J. Blom, R. Bol, and L. Kempe. Automatic Detection of Reat Interactions in Temporal Logic. In
Feature Interactions in Telecommunications Systgrages 1-19, 1995.

[4] M. Bostrom and M. Engstedt. Feature Interaction Deétecand Resolution in the Delphi framework. In
Feature Interactions in Telecommunications Systqrages 157-172, 1995.

[5] K. Braithwaite and J. Atlee. Towards Automated Deteciod Feature Interactions. Feature Interactions
in Telecommunications Systemages 36-59, 1994,

[6] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W..Schnure, and H. Velthuijsen. A Feature
Interaction Benchmark for IN and Beyond. Faature Interactions in Telecommunications Sysigrages
1-23,1994.

[7] M. Faci and L. Logrippo. Specifying Features and Anahgst heir Interactions in a LOTOS Environment.
In Feature Interactions in Telecommunications Sysiqrages 136—151, 1994.

[8] P. Godefroid. Using Partial Orders to Improve Automatdgeification Methods. I'CAV, 1990.

[9] Y. Kawarasaki and T. Ohta. A New Proposal for Featurerbatgon Detection and Elimination. Feature
Interactions in Telecommunications Systepages 127-139, 1995.

[10] B. Kelly, M. Crowther, and J. King. Feature InteractiDatection using SDL Models. IiEEE Globecom
1994.

[11] B. Kelly, M. Crowther, J. King, R. Masson, and J. DeLapeyService Validation and Testing. Feature
Interactions in Telecommunications Systepages 173-184, 1995.

[12] F. J. Lin and Y.-J. Lin. A Building Block Approach to Detitng and Resolving Feature Interactions. In
Feature Interactions in Telecommunications Systqrages 86—119, 1994.

[13] Northern TelecomDMS-100 Meridian Digital Centrex Library60006.08/12-92 issue 4 edition, 1992.

[14] T. Ohta and Y. Harada. Classification, Detection andoRe®n of Service Interactions in Telecommuni-
cation Services. lfreature Interactions in Telecommunications Systgrages 60—72, 1994.

[15] K. Pomakis. Reachability analysis of feature intei@ts in service-oriented software systems. Master’s
thesis, Department of Computer Science, University of Yiabe 1995.

[16] K. Pomakis and J. Atlee. Reachability analysis of feainteractions: A progress report. IIBSTA 1996.

[17] B. Stepien and L. Logrippo. Representing and Verifyingentions in Telephony Features Using Abstract
Data Types. Irfreature Interactions in Telecommunications Systgrages 141-155, 1995.

