An intensional interface is defined in two directions: (a) the methods that are required by the module to operate; and (b) the methods that are provided by a module.

· A module Mi can be extended to create a new module Mj. Example: An object-oriented class PeriodicTable can be extended to support the java.util.Iterator design pattern to generate Element objects representing the 117 elements of the periodic table in order of atomic weight.

· A module Mi and Mj can be assembled to form a new module Mk. The term ‘assembly’ means the strict combination of the two modules. In particular, assembly must respect the interface boundaries of the individual modules.

· A module Mi and Mj can be composed to form a new module Mk. The distinction between composition and assembly is that in composition, the modular boundaries of the respective modules are not respected.

Two additional characteristic to be discussed are ordering and reversibility. Returning to our object-oriented design example, the different features added a class are shown below. Note that the java.lang.String class has had the following major changes to its interface (internal code fixes are not shown; only interface changes):
	Version
	Contents

	Original
	String()

String(String)

String(char[])
String(char[],int,int)

String(StringBuffer)

Length

charAt(int)

getChars(int,int,char[],int)

equals(Object)

equalsIgnoreCase(String)

compareTo(String)

regionMatches(int,String,int,int)

regionMatches(Boolean,int,String,int,int)

startsWith(String,int)

startsWith(String)
	endsWith(String)

hashCode()indexOf(int)

indexOf(int, int)

lastIndexOf(int)

lastIndexOf(int,int)

indexOf(String)

indexOf(String,int)

lastIndexOf(String)

lastIndexOf(String,int)

substring(int)

substring(int,int)

concat(String)

replace(char,char)

toLowerCase()

toUpperCase()
	toString()

toCharArray()

trim()
valueOf(Object)

valueOf(char[])

valueOf(char[],int,int)

copyValueOf(char[],int,int)

copyValueOf(char[])

valueOf(boolean)

valueOf(char)

valueOf(int)

valueOf(long)

valueOf(float)

valueOf(double)

intern()

	1.1
	String(byte[],int,int,String)

String(byte[],String)

String(byte[],int,int)
	String(bytes[])

getBytes(String)

getBytes()
	toLowerCase(Locale)

toUpperCase(Locale)

	1.2
	CASE_INSENSITIVE_ORDER
compareToIgnoreCase(String)

	1.4
	contentEquals(StringBuffer)

subsequence(int,int)

matches(String)
	replaceFirst(String,String)

replaceAll(String,String)
	split(String,int)

split(String)

	1.5
	String(int[],int,int)

String(StringBuilder)

codePointAt(int)

codePointBefore(int)
	codePointCount(int,int)

offsetByCodePoints(int,int)

contentEquals(CharSequence)
	contains(CharSequence)

replace(CharSequence, CharSequence)

format(Locale, String,Object…)

	1.6
	String(byte[],int,int,Charset)

String(byte[],Charset)
	isEmpty()
	getBytes(Charset)

	Deprecated
	String(byte[],int,int,int)
	String(byte[],int)
	getBytes(int,int,byte[],int)

The evolved versions each add different core capabilities to the class. Hidden internal changes involving the implementation only are known only to the developers. For example, the implementation of toUpperCase() method in the original String class was modified to take into account the default Locale, using a static Locale.getDefault() method. In doing so, a new method was added to the interface in JDK1.1. Now, the implementation of the original JDK1.1.5 released in 1997 had the following implementation for toLowerCase(Locale):
public String toLowerCase(Locale locale) {

 StringBuffer result = new StringBuffer();

 int i;

 int len = count;

 if (locale.getLanguage().equals("tr")) {

 // special loop for Turkey

 for (i = 0; i < len; ++i) {

 char ch = value[offset+i];

 if (ch == 'I') {

 result.append('\u0131'); // dotless small i

 continue;

 }

 if (ch == '\u0130') { // dotted I

 result.append('i'); // dotted i

 continue;

 }

 result.append(Character.toLowerCase(ch));

 }

 } else {

 // normal, fast loop

 for (i = 0; i < len; ++i) {

 result.append(Character.toLowerCase(value[offset+i]));

 }

 }

 return result.toString();

}

The hidden dependency on the Turkish language is completely unexpected. The code has improved dramatically, yet even in the JDK 1.6 code release, there is special handling for:

Azerbaijani (az), Turkish (tr), and Lithuanian (lt) are handled specially. There is even a small check for a Unicode character '\u03A3') (∑) to be dealt with specially. Note the designers finally created a new class, ConditionalSpecialCasing, to handle the numerous special cases rather than embed this logic within the String class. This example shows the “code bloat” that occurs as systems continually evolve. It also shows that the (dis)orderly development of code often leaves poor implementations to be salvaged by code refactoring techniques. The Java designers would argue that the java.lang.* package is part of the JDK platform and thus they are responsible for ensuring backward compatibility and handling whatever arbitrary use of their system. This argument is persuasive yet the majority of object oriented development is in the production of applications not platforms. In these cases, the additional principle (first espoused by Parnas in his article on designing for contraction and extension) of reversibility is so important. It may be that over time, the logic of the Sigma special character was lost and only appeared in the code. Only a full code review would catch this special case if it ever changed.
